已知函數(shù)f(x)的定義域為[-2,4],且f(4)=f(-2)=1,f′(x)為f(x)的導函數(shù),函數(shù)y=f′(x)的圖象如下圖所示.

則平面區(qū)域所圍成的面積是(  )
A.2 B.4 C.5 D.8
B

分析:根據(jù)導函數(shù)的圖象,分析原函數(shù)的性質(zhì)或作出原函數(shù)的草圖,找出a、b滿足的條件,畫出平面區(qū)域,即可求解.

解:由圖可知[-2,0)上f′(x)<0,
∴函數(shù)f(x)在[-2,0)上單調(diào)遞減,(0,4]上f′(x)>0,
∴函數(shù)f(x)在(0,4]上單調(diào)遞增,
故在[-2,4]上,f(x)的最大值為f(4)=f(-2)=1,
∴f(2a+b)<1(a≥0,b≥0)?
表示的平面區(qū)域如圖所示:
故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)
已知函數(shù)的導數(shù)是.
(1)求時,在x=1處的切線方程。
(2)當時,求證:對于任意的兩個不等的正數(shù),有;
(3)對于任意的兩個不等的正數(shù),若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線在點A(0,1)處的切線斜率為(  )
A.1B.2C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線與曲線相切。
(1)求b的值;
(2)若方程上有兩個解,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線y=ax2+bx+c經(jīng)過點(1,1),且在點(2,-1)處的切線的斜率為1,則a,b,c的值分別為_______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若P=3,求曲線在點(1,)處的切線方程;
(2)若P>0且函數(shù)在其定義域內(nèi)為增函數(shù),求實數(shù)P的取值范圍;
(3)若函數(shù)存在極值,求實數(shù)P的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

2014年青奧會水上運動項目將在J地舉行,截止2010年底,投資集團B在J地共投資100萬元
用于地產(chǎn)和水上運動項目的開發(fā)。經(jīng)調(diào)研,從2011年初到2014年底的四年間,B集團預期可從三個方面獲得利潤:一是房地產(chǎn)項目,四年獲得的利潤的值為該項目投資額(單位:百萬元)的20%;二是水上運動項目,四年獲得的利潤的值為該項目投資額(單位:百萬元)的算術平方根;三是旅游業(yè),四年可獲得利潤10百萬元。
(1)B集團的投資應如何分配,才能使這四年總的預期利潤最大?
(2)假設2012年起,J地政府每年都要向B集團征收資源占用費,2012年征收2百萬元后,以后每年征收的金額比上一年增加10%,若B集團投資成功的標準是:從2011年初到2014年底,這四年總的預期利潤中值(預期最大利潤與最小利潤的平均數(shù))不低于投資額的18%,問B集團投資是否成功?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設函數(shù),若,則  ="              " ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線在(1,1)處的切線方程是     ( )                                                
A.B.C.D.

查看答案和解析>>

同步練習冊答案