正數(shù)數(shù)列{an}的前n項和為Sn,且2
(1)試求數(shù)列{an}的通項公式;
(2)設(shè)bn=,{bn}的前n項和為Tn,若對一切正整數(shù)n都有Tn<m,求m的最小值.
解:(1)∵an>0,
∴4Sn=(an+1)2,4Sn﹣1=(an﹣1+1)2
則當(dāng)n≥2時,4an=an2+2an﹣an﹣12﹣2an﹣1,即(an+an﹣1)(an﹣an﹣1﹣2)=0,
而an>0,∴an﹣an﹣1=2(n≥2)
,
∴a1=1,則an=2n﹣1
(2),
,m≥
所以m的最小值是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正數(shù)數(shù)列{an}的前n項和為Sn,且2
Sn
=an+1

(1)試求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1
anan_+1
,{bn}的前n項和為Tn,若對一切正整數(shù)n都有Tn<m,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)數(shù)列{an}的前n項和為Sn,且對任意的正整數(shù)n滿足2
Sn
=an+1

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項和Bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正數(shù)數(shù)列{an}的前n項和為Sn,且存在正數(shù)t,使得對于任意的正整數(shù)n,都有
tSn
=
t+an
2
成立.若
lim
n→+∞
Sn
an
<t
,則t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正數(shù)數(shù)列{an} 的前n項和為 Sn,且對任意的n∈N*,Sn是an2和an的等差中項.
(1)求數(shù)列{an} 的通項公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k≤1500中,是否存在正整數(shù)m,使得不等式Sn-1005>
an22
對一切滿足n>m的正整數(shù)n都成立?若存在,則這樣的正整數(shù)m共有多少個?并求出滿足條件的最小正整數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)數(shù)列{an}的前n項和Sn與通項an滿足2
Sn
=an+1
,求an

查看答案和解析>>

同步練習(xí)冊答案