命題p:“若x2-3x+2≠0,則x≠2”,若p為原命題,則p的逆命題、否命題、逆否命題中正確命題的個數(shù)是


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3
B
分析:可先判斷出原命題與其逆命題的真假,根據(jù)四種命題的等價關系即可判斷出真命題的個數(shù).
解答:命題p:“若x2-3x+2≠0,則x≠2”是真命題,故其逆否命題也是真命題,因為二者是等價命題.
其逆命題是“若x≠2,則x2-3x+2≠0”是假命題,其原因是若x=1≠2,則12-3×1+2=0.
由此可知命題p的否命題也是假命題,因為原命題的逆命題與否命題是等價命題.
綜上可知:命題p的逆命題、否命題、逆否命題中正確命題的個數(shù)是1.
故選B.
點評:掌握四種命題“原命題與逆否命題、逆命題與否命題”的等價關系是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:x1和x2是方程x2-mx-2=0的兩個實根,不等式a2-5a-3≥|x1-x2|對任意實數(shù)m∈[-1,1]恒成立;命題q:不等式ax2+2x-1>0有解,若命題p是真命題,命題q是假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:x1、x2是方程x2-mx-2=0的兩個實根,不等式a2-5a-3≥|x1-x2|對任意實數(shù)m∈[-1,1]恒成立;命題q:只有一個實數(shù)x滿足不等式x2+2
2
ax+11a≤0
,
若命題p是假命題,同時命題q是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列有關命題的說法中錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:點(2x+3-x2,x-2)在第四象限;命題q:x2-(3a+6)x+2a2+6a<0,若?p是?q的必要不充分條件,則實數(shù)a的取值范圍是
-2≤a≤-1
-2≤a≤-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈[2,3],使得不等式x2-2x+1-m≥0成立;命題q:方程mx2+(m-5)y2=1表示雙曲線.若p或q為真命題,p且q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案