9.已知函數(shù)f(x)=ex,其中e=2.71828…為自然對(duì)數(shù)的底數(shù).
(1)設(shè)函數(shù)g(x)=(x2+ax-2a-3)f(x),a∈R.試討論函數(shù)g(x)的單調(diào)性;
(2)設(shè)函數(shù)h(x)=f(x)-mx2-x,m∈R,若對(duì)任意${x_1},{x_2}∈[{\frac{1}{2},2}]$,且x1>x2都有x2h(x1)-x1h(x2)>x1x2(x2-x1)成立,求實(shí)數(shù)m的取值范圍.

分析 (1)先求函數(shù)g(x)的解析式,求導(dǎo),根據(jù)a的取值,分別解關(guān)于x的不等式g′(x)>0,g′(x)<0即可;
(2)根據(jù)已知條件將其轉(zhuǎn)化成,$\frac{h({x}_{1})}{{x}_{1}}$+x1>$\frac{h({x}_{2})}{{x}_{2}}$+x2,且x1>x2,構(gòu)造輔助函數(shù)F(x)=$\frac{{e}^{x}}{x}$-(m-1)x-1,求導(dǎo),分離變量求得m≤$\frac{{e}^{x}(x-1)}{{x}^{2}}$+1,在x∈[$\frac{1}{2}$,2]上恒成立,構(gòu)造輔助函數(shù),求導(dǎo),利用函數(shù)的單調(diào)性,求得函數(shù)的最小值,即可求得m的取值范圍.

解答 解:(1)g(x)=ex(x2+ax-2a-3),a∈R.
∴g′(x)=ex[x2+(a+2)x-a-3],
=ex(x-1)(x+a+3),
當(dāng)a=-4時(shí),g′(x)=ex(x-1)2≥0,
∴g(x)在R上單調(diào)遞增,
當(dāng)a>-4時(shí),由g′(x)>0,解得x<-a-3或x>1,
∴g(x)在(-∞,-a-3),(1,+∞)上單調(diào)遞增,
由g′(x)<0,解得-a-3<x<1,
∴g(x)在(-a-3,1)上單調(diào)遞減;
當(dāng)a<-4時(shí),由g′(x)>0,解得x<1或x>-a-3,
∴g(x)在(-∞,1),(-a-3,+∞)上單調(diào)遞增,
由g′(x)<0,解得1<x<-a-3,
∴g(x)在(1,-a-3)上單調(diào)遞減,
綜上所述:當(dāng)a=-4時(shí),g(x)在R上單調(diào)遞增;
當(dāng)a>-4時(shí),g(x)在(-∞,-a-3),(1,+∞)上單調(diào)遞增,在(-a-3,1)上單調(diào)遞減;
當(dāng)a<-4時(shí),g(x)在(-∞,1),(-a-3,+∞)上單調(diào)遞增,在(1,-a-3)上單調(diào)遞減.
(2)h(x)=f(x)-mx2-x=ex-mx2-x,${x_1},{x_2}∈[{\frac{1}{2},2}]$,
∴x2h(x1)-x1h(x2)>x1x2(x2-x1),
∴$\frac{h({x}_{1})}{{x}_{1}}$-$\frac{h({x}_{2})}{{x}_{2}}$>x2-x1,
不等式$\frac{h({x}_{1})}{{x}_{1}}$-$\frac{h({x}_{2})}{{x}_{2}}$>x2-x1,等價(jià)于$\frac{h({x}_{1})}{{x}_{1}}$+x1>$\frac{h({x}_{2})}{{x}_{2}}$+x2,且x1>x2,
記F(x)=$\frac{h(x)}{x}+x$=$\frac{{e}^{x}}{x}$-(m-1)x-1,
∴F(x)在[$\frac{1}{2}$,2]上單調(diào)遞增,
F′(x)=$\frac{{e}^{2}(x-1)}{{x}^{2}}$-(m-1)≥0在x∈[$\frac{1}{2}$,2]上恒成立,
m≤$\frac{{e}^{x}(x-1)}{{x}^{2}}$+1,在x∈[$\frac{1}{2}$,2]上恒成立,
記P(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$+1,
∴P′(x)=$\frac{x{e}^{x}[(x-1)^{2}+1]}{{x}^{4}}$>0,
∴P(x)在[$\frac{1}{2}$,2]上單調(diào)遞增,P(x)min=P($\frac{1}{2}$)=1-2$\sqrt{e}$.
∴實(shí)數(shù)m的取值范圍為(-∞,1-2$\sqrt{e}$].

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、求函數(shù)的最值問題,利用函數(shù)的性質(zhì)解決不等式、方程問題及取值范圍,重點(diǎn)考查學(xué)生的代數(shù)推理論證能力.解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在底面為正方形的四棱錐S-ABCD中,SA=SB=SC=SD,異面直線AD與SC所成的角為60°,AB=2,則四棱錐S-ABCD的外接球的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}滿足:a1=2,a${\;}_{n+1}={a}_{n}+λ•{2}^{n}$,且a1、a2+1、a3成等差數(shù)列,其中n∈N+;
(1)求實(shí)數(shù)λ的值及數(shù)列{an}的通項(xiàng)公式;
(2)若不等式$\frac{p}{2n-5}≤\frac{2p+16}{{a}_{n}}$成立的自然數(shù)n恰有4個(gè),求正整數(shù)p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,若f(log2$\frac{\sqrt{2}}{2}$)+f[f(9)]=$\frac{1+2\sqrt{2}}{4}$;若f(f(a))≤1,則實(shí)數(shù)a的取值范圍是${log}_{2}\frac{1}{3}≤a≤(\frac{1}{3})^{\frac{1}{3}}$,或a≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)a=$\sqrt{\frac{1-cos50°}{2}}$,b=$\frac{2tan13°}{1-ta{n}^{2}13°}$,c=$\frac{1}{2}$cos4°-$\frac{\sqrt{3}}{2}$sin4°,則有( 。
A.a>b>cB.a<b<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.下列命題中,
①“若a+b≥2,則a,b中至少有一個(gè)不小于1”的逆命題
②若命題“非P”與命題“P或Q”都是真命題,則命題Q為真命題
③“所有奇數(shù)都是素?cái)?shù)”的否定是“至少有一個(gè)奇數(shù)不是素?cái)?shù)”
④“sinθ=$\frac{1}{2}$”是“θ=30°”的充分不必要條件
是真命題的是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(Ⅰ)已知角α終邊上一點(diǎn)P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值.
(Ⅱ)已知$\overrightarrow a$=(3,1),$\overrightarrow b$=(sinα,cosα),且$\overrightarrow a$∥$\overrightarrow b$,求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.計(jì)算i+2i2+3i3+…+2016i2016=1008-1008i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點(diǎn)F1(-1,0),F(xiàn)2(1,0)是橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn),過點(diǎn)P(0,3)的直線l與橢圓交于A,B兩點(diǎn),且|AF1|+|AF2|=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若$\overrightarrow{PA}$=$\overrightarrow{AB}$,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案