【題目】已知長方體ABCD﹣A1B1C1D1中,AB=4,BC=3,AA1=5,則異面直線BD1與AC所成角的余弦值為

【答案】
【解析】解:建立如圖坐標(biāo)系,∵在長方體ABCD﹣A1B1C1D1中,AB=4,BC=3,AA1=5,
∴D1(0,0,5),B(3,4,0),
A(3,0,0),C(0,4,0),
=(﹣3,﹣4,5), =(﹣3,4,0).
∴cos< , >= =﹣
∴AC與BD1所成角的余弦值
所以答案是:

【考點(diǎn)精析】本題主要考查了異面直線及其所成的角的相關(guān)知識(shí)點(diǎn),需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

x

2x+

sin(2x+

f(x)


(1)用五點(diǎn)法完成下列表格,并畫出函數(shù)f(x)在區(qū)間 上的簡圖;
(2)若 ,函數(shù)g(x)=f(x)+m的最小值為2,試求處函數(shù)g(x)的最大值,指出x取值時(shí),函數(shù)g(x)取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=tan(ωx﹣)(ω>0)的最小正周期為2π.
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)求不等式f(x)>﹣1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn);
(I)求異面直線A1B,AC1所成角的余弦值;
(II)求直線AB1與平面C1AD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,E,F(xiàn),G,M,N分別為PB,AB,BC,PD,PC的中點(diǎn).求證:平面EFG⊥平面EMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PA⊥平面ABCD,PA=AB=2.

(1)若E,F(xiàn)分別是PC,AD的中點(diǎn),證明:EF∥平面PAB;
(2)若E是PC的中點(diǎn),F(xiàn)是AD上的動(dòng)點(diǎn),問AF為何值時(shí),EF⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】比較下列各組數(shù)中兩個(gè)數(shù)的大小.
(1) ;
(2)3 與3.1 ;
(3) ;
(4)0.20.6與0.30.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+2x+c的對稱軸為x=1,g(x)=x+ (x>0).
(1)求函數(shù)g(x)的最小值及取得最小值時(shí)x的值;
(2)試確定c的取值范圍,使g(x)﹣f(x)=0至少有一個(gè)實(shí)根;
(3)若F(x)=﹣f(x)+4x+c,存在實(shí)數(shù)t,對任意x∈[1,m],使F(x+t)≤3x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方體ABCD﹣A1B1C1D1內(nèi)接于球O,底面ABCD是正方形,E為AA1的中點(diǎn),OA⊥平面BDE,則 =

查看答案和解析>>

同步練習(xí)冊答案