定義在(-∞,0)∪(0,+∞)上的奇函數(shù)f(x)在(0,+∞)上為減函數(shù),且f(2)=0,則“
f(x)-f(-x)
x
<0
”是
“2x>4”成立的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件
分析:先把兩個命題M與N的解集解出看兩集合A,B,若A?B則命題M是命題N的充分不必要條件,此題即是運用這種推理.
解答:解:∵f(x)定義在(-∞,0)∪(0,+∞)上的奇函數(shù)
∴f(x)-f(-x)=2f(x)
f(x)-f(-x)
x
<0
f(x)
x
< 0

又∵f(x)在(0,+∞)上為減函數(shù),且f(2)=0
∴x∈(2,+∞)
又∵f(x)定義在(-∞,0)∪(0,+∞)上的奇函數(shù)
∴x∈(2,+∞)∪(-∞,-2)
∵2x>4
∴x>2
f(x)-f(-x)
x
<0
是2x>4的必要而不充分條件.
點評:充分條件、必要條件、充要條件是在構(gòu)成許多數(shù)學命題時要用到的重要概念,但由于這些概念比較抽象,學生不易掌握,因此成了中學數(shù)學的難點之一.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若定義在(-1,0)內(nèi)的函數(shù)f(x)=log2a(x+1)>0,則a的取值范圍是( 。
A、(0,
1
2
)
B、(0,
1
2
]
C、(
1
2
,+∞)
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax2+(a-2b)x+a-1是定義在(-a,0)∪(0,2a-2)上的偶函數(shù),則f(
a2+b25
)
=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中:
①集合A={ x|0≤x<3且x∈N }的真子集的個數(shù)是8;
②關(guān)于x的一元二次方程x2+mx+2m+1=0一個根大于1,一個根小于1,則實數(shù)m的取值范圍m<-
2
3

③函數(shù)f(x)=x2+(3a+1)x+2a在 (-∞,4)上為減函數(shù),則實數(shù)a的取值范圍是a≤3;
④已知函數(shù)y=4x-4•2x+1(-1≤x≤2),則函數(shù)的值域為[-
3
4
,1];
⑤定義在(-1,0)的函數(shù)f(x)=log(2a)(x+1)滿足f(x)>0的a的取值范圍是(0,
1
2
);
⑥將三個數(shù):x=20.2,y=(
1
2
)2
,z=log2
1
2
,
按從大到小排列正確的是z>x>y,其中正確的有
②⑤
②⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在{x|x>0}上的增函數(shù),且f(
x
y
)=f(x)-f(y)

(Ⅰ)求f(1)的值;
(Ⅱ)若f(6)=1,解不等式f(x+3)-f(
1
x
)<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2(x+a)+1過點(4,4).
(1)求實數(shù)a;
(2)將函數(shù)f(x)的圖象向下平移1個單位,再向右平移a個單位后得到函數(shù)g(x)圖象,設(shè)函數(shù)g(x)關(guān)于y軸對稱的函數(shù)為h(x),試求h(x)的解析式;
(3)對于定義在(-4,0)上的函數(shù)y=h(x),若在其定義域內(nèi),不等式[h(x)+2]2>h(x)m-1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案