從甲城市到乙城市m分鐘的電話費由函數(shù)f(m)=1.06×(
3
4
[m]+
7
4
)給出,其中m>0,[m]表示不大于m的最大整數(shù)(如[3]=3,[3.9]=3,[3.1]=3),則從甲城市到乙城市7.8分鐘的電話費為
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件根據(jù)新定義求得從甲城市到乙城市7.8分鐘的電話費f(7.8)的值.
解答: 解:由題意可得,從甲城市到乙城市7.8分鐘的電話費為 f(7.8)=1.06×(
3
4
[7.8]+
7
4
)=1.06×(
3
4
×7+
7
4
)=7.42,
故答案為:7.42.
點評:本題主要考查新定義、求函數(shù)的值,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

有2位老師和6位同學排成一排拍照,如果要求2位老師必須一起站在中間,那么共有
 
種不同的排法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,若p=0.8,則輸出的n=( 。
A、5B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a=40.2,b=0.24,c=log40.2,則a,b,c的大小關(guān)系為( 。
A、a>b>c
B、b>c>a
C、c>a>b
D、b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合:A={x|x2=1},B={x|ax=1},且A∩B=B,則實數(shù)a的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,ABCD是矩形,E是棱PD的中點,PA=AD=4,AB=3.
(1)證明PB∥底面ACE;
(2)求直線PB與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
x-y-2≤0
x+2y-4≥0
2y-3≤0
所確定的平面區(qū)域記為D,當M(x,y)∈D時,A(-2,0),B(2,0),則
AM
BM
的最小值為( 。
A、
13
2
-4
B、
4
5
5
-4
C、-
3
4
D、-
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2+bx+c,(0<2a<b),?x∈R,f(x)≥0恒成立,則
f(1)
f(0)-f(-1)
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在實數(shù)R上的函數(shù),任意x、y∈R,有f(x+y)=f(x)f(y),當x<0時,f(x)>1且f(-1)=
5
.求:
(1)f(0);
(2)證明:任意x,y∈R,x≠y,都有
f(x)-f(y)
x-y
<0.

查看答案和解析>>

同步練習冊答案