如圖,在底面是直角梯形的四棱錐S-ABCD中,已知∠ABC=90°,SA⊥平面ABCD,AB=BC=2,AD=1.
(1)當(dāng)SA=2時(shí),求直線SA與平面SCD所成角的正弦值;
(2)若平面SCD與平面SAB所成角的余弦值為數(shù)學(xué)公式,求SA的長(zhǎng).

解:以A為原點(diǎn),建立如圖所示空間直角坐標(biāo)系.
各點(diǎn)坐標(biāo) A(0,0,0)S(0,0,2)D(1,0,0)C(2,2,0)
=(1,0,-2)=(2,2,-2),
設(shè)面SCD的一個(gè)法向量為
取z=1.則
=(0,0,2)
|cos===.∴直線SA與平面SCD所成角的正弦值等于
(2)設(shè)SA=a,則 S(0,0,a),=(1,0,-a) =(2,2,-a),
設(shè)面SCD的一個(gè)法向量為,則取z=1.則
又面SAB的一個(gè)法向量為=(1,0,0),|cos<>|===,解得a=
分析:(1)建立空間直角坐標(biāo)系,求出SCD 的法向量,利用夾角余弦得值去解決.
(2)求出平面SCD與平面SAB 的法向量,利用面SCD與平面SAB所成角與的夾角相等或互補(bǔ)的關(guān)系去解決.
點(diǎn)評(píng):本題考用空間向量解決直線和平面位置關(guān)系、二面角大小,考查轉(zhuǎn)化的思想方法,空間想象能力,計(jì)算能力.屬于常規(guī)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在底面是直角梯形的四棱錐S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=
12

(1)求四棱錐S-ABCD的體積;
(2)求證:面SAB⊥面SBC;
(3)求SC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在底面是直角梯形的四棱錐    P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4.AD=2,AB=2
3
,BC=6.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•宿州一模)如圖,在底面是直角梯形的四棱錐P-ABCD中,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=3,梯形上底AD=1.
(1)求證:BC⊥平面PAB;
(2)求面PCD與面PAB所成銳二面角的正切值;
(3)在PC上是否存在一點(diǎn)E,使得DE∥平面PAB?若存在,請(qǐng)找出;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在底面是直角梯形的四棱錐P-ABCD中,∠DAB=90°,PA⊥平面 ABCD,PA=AB=BC=1,AD=2,M為PD中點(diǎn).
( I ) 求證:MC∥平面PAB;
(Ⅱ)在棱PD上找一點(diǎn)Q,使二面角Q-AC-D的正切值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在底面是直角梯形的四棱錐S-ABCD中,已知∠ABC=90°,SA⊥平面ABCD,AB=BC=2,AD=1.
(1)當(dāng)SA=2時(shí),求直線SA與平面SCD所成角的正弦值;
(2)若平面SCD與平面SAB所成角的余弦值為
49
,求SA的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案