【題目】已知關(guān)于x的二次函數(shù)f(x)=ax2﹣4bx+1. (Ⅰ)設(shè)集合A={﹣1,1,2,3,4,5}和B={﹣2,﹣1,1,2,3,4},分別從集合A,B中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.
(Ⅱ)設(shè)點(diǎn)(a,b)是區(qū)域 內(nèi)的隨機(jī)點(diǎn),求函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.
【答案】解:要使函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù),則a>0且 ,即a>0且2b≤a. (Ⅰ)所有(a,b)的取法總數(shù)為6×6=36個(gè),滿足條件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1),(3,﹣2),(3,﹣1),(3,1),(4,﹣2),(4,﹣1),(4,1),(4,2),(5,﹣2),(5,﹣1),(5,1),(5,2)共16個(gè),
所以,所求概率 .
(Ⅱ)如圖,求得區(qū)域 的面積為 .
由 ,求得
所以區(qū)域內(nèi)滿足a>0且2b≤a的面積為 .
所以,所求概率
【解析】(Ⅰ)分a=1,2,3,4,5 這五種情況來研究a>0,且 ≤1的取法共有16種,而所有的取法共有6×6=36 種,從而求得所求事件的概率.(Ⅱ)由條件可得,實(shí)驗(yàn)的所有結(jié)果構(gòu)成的區(qū)域的面積等于S△OMN= ×8×8=32,滿足條件的區(qū)域的面積為S△POM= ×8× = ,故所求的事件的概率為 P= ,運(yùn)算求得結(jié)果.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解幾何概型的相關(guān)知識(shí),掌握幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是( )
A.眾數(shù)
B.平均數(shù)
C.中位數(shù)
D.標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)植被被破壞,土地沙化越來越嚴(yán)重,最近三年測得沙漠增加值分別為0.2萬公頃、0.4萬公頃、0.76萬公頃,則沙漠增加數(shù)y(萬公頃)關(guān)于年數(shù)x的函數(shù)關(guān)系較為近似的是( )
A.y=0.2x
B.
C.
D.y=0.2+log16x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,射線,與, 各有一個(gè)交點(diǎn),當(dāng)時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng),這兩個(gè)交點(diǎn)重合.
(1)分別說明, 是什么曲線,并求出與的值;
(2)設(shè)當(dāng)時(shí), 與, 的交點(diǎn)分別為,當(dāng), 與, 的交點(diǎn)分別為,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)判斷f(x)的奇偶性并證明;
(2)若f(x)的定義域?yàn)閇α,β](β>α>0),判斷f(x)在定義域上的增減性,并加以證明;
(3)若0<m<1,使f(x)的值域?yàn)閇logmm(β﹣1),logmm(α﹣1)]的定義域區(qū)間[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的一個(gè)焦點(diǎn)是, 為坐標(biāo)原點(diǎn),且橢圓短軸的兩個(gè)三等分點(diǎn)與一個(gè)焦點(diǎn)構(gòu)成正三角形,過點(diǎn)的直線交橢圓于點(diǎn).
(1)求橢圓的方程;
(2)設(shè)為橢圓上一點(diǎn),且滿足,當(dāng),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a,b是函數(shù)f(x)=x2﹣px+q(p>0,q>0)的兩個(gè)不同的零點(diǎn),c<0且a,b,c這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則 ﹣2c的最小值等于( )
A.9
B.10
C.3
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(x﹣1)ex﹣kx2(k∈R).
(1)當(dāng)k=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng) 時(shí),求函數(shù)f(x)在[0,k]上的最大值M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an} 中,a1=1,a2= ,且 (n=2,3,4,…)
(1)求a3、a4的值;
(2)設(shè)bn= (n∈N*),試用bn表示bn+1并求{bn} 的通項(xiàng)公式;
(3)設(shè)cn= (n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com