10.已知數(shù)列{an}滿足an+1=an-2an+1an,an≠0且a1=1
(1)求證:數(shù)列$\{\frac{1}{a_n}\}$是等差數(shù)列,并求出{an}的通項(xiàng)公式;
(2)令${b_n}={(-1)^{n-1}}n{a_n}{a_{n+1}}$,求數(shù)列{bn}的前2n項(xiàng)的和T2n

分析 (1)由an+1=an-2an+1an,an≠0且a1=1,取倒數(shù)可得$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2,即可得出.
(2)${b_n}={(-1)^{n-1}}n{a_n}{a_{n+1}}$=(-1)n-1$\frac{n}{(2n-1)(2n+1)}$=(-1)n-1$\frac{1}{4}$$(\frac{1}{2n-1}+\frac{1}{2n+1})$,利用“裂項(xiàng)求和”即可得出.

解答 (1)證明:∵an+1=an-2an+1an,an≠0且a1=1,∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2,
∴數(shù)列$\{\frac{1}{a_n}\}$是等差數(shù)列,首項(xiàng)為1,等差數(shù)列為2.
∴$\frac{1}{{a}_{n}}$=1+2(n-1)=2n-1,解得an=$\frac{1}{2n-1}$.
(2)解:${b_n}={(-1)^{n-1}}n{a_n}{a_{n+1}}$=(-1)n-1$\frac{n}{(2n-1)(2n+1)}$=(-1)n-1$\frac{1}{4}$$(\frac{1}{2n-1}+\frac{1}{2n+1})$,
∴T2n=$\frac{1}{4}$$[(\frac{1}{1}+\frac{1}{3})$-$(\frac{1}{3}+\frac{1}{5})$+…+$(\frac{1}{4n-3}+\frac{1}{4n-1})$-$(\frac{1}{4n-1}+\frac{1}{4n+1})]$
=$\frac{1}{4}$$(1-\frac{1}{4n+1})$=$\frac{n}{4n+1}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,角A,B,C的對邊分別是a,b,c,已知$b=2,c=2\sqrt{2}$,且$C=\frac{π}{4}$,則△ABC的面積為(  )
A.$\sqrt{3}+1$B.$\sqrt{3}-1$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|-2≤x≤2},B={x|x>1}
(1)求A∩B,A∪B,(∁uB)∩A;
(2)設(shè)集合M={x|a<x<a+6},且A⊆M,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且2S3-3S2=15,則數(shù)列{an}的公差為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)$y=3sin(2x+\frac{π}{6})$的圖象上各點(diǎn)沿x軸向右平移$\frac{π}{6}$個(gè)單位長度,所得函數(shù)圖象的一個(gè)對稱中心為(  )
A.$(\frac{7π}{12},0)$B.$(\frac{π}{6},0)$C.$(\frac{5π}{8},0)$D.$(\frac{2π}{3},-3)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$sin(α+\frac{π}{6})=\frac{1}{3}$,則$cos(2α-\frac{2π}{3})$的值是(  )
A.$\frac{5}{9}$B.$-\frac{8}{9}$C.$-\frac{1}{3}$D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題中正確的是( 。
A.兩條直線都和同一個(gè)平面平行,則這兩條直線平行
B.兩條直線沒有公共點(diǎn),則這兩條直線平行
C.兩條直線都和第三條直線垂直,則這兩條直線平行
D.一條直線和一個(gè)平面內(nèi)所有直線沒有公共點(diǎn),則這條直線和這個(gè)平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.圓${C_1}:{x^2}+{y^2}+2x+2y-2=0$與圓${C_2}:{x^2}+{y^2}-4x-2y+4=0$的公切線有( 。
A..1條B..2條C..3條D..4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|=2|{\overrightarrow a}|$,則向量$\overrightarrow a-\overrightarrow b$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊答案