已知數(shù)列{an}滿足a1=2,an+1=an-.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=nan·2n,求數(shù)列{bn}的前n項(xiàng)和Sn
(1) an=.(2) Sn=n·2n+1.
【解析】
試題分析:(1)由已知得an+1-an=-,又a1=2,
∴當(dāng)n≥2時(shí),an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=,
a1=2也符合上式,∴對一切n∈N*,an=. 6分
(2)由(1)知:bn=nan·2n=(n+1)·2n,
∴Sn=2×2+3×22+4×23+…+(n+1)×2n,①
2Sn=2×22+3×23+…+n×2n+(n+1)×2n+1,②
∴①-②得-Sn=2×2+22+23+…+2n-(n+1)×2n+1=2+-(n+1)×2n+1
=2+2n+1-2-(n+1)·2n+1=-n·2n+1,∴Sn=n·2n+1. 12分
考點(diǎn):本題考查了數(shù)列的通項(xiàng)公式及前n項(xiàng)和
點(diǎn)評:數(shù)列解答題考查的的熱點(diǎn)為求數(shù)列的通項(xiàng)公式、等差(比)數(shù)列的性質(zhì)及數(shù)列的求和問題.因此在復(fù)習(xí)中,要特別注意加強(qiáng)對由遞推公式求通項(xiàng)公式、求有規(guī)律的非等差(比)數(shù)列的前n項(xiàng)和等的專項(xiàng)訓(xùn)練.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3+4an |
12-4an |
1 | ||
an-
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2 |
3nan-1 |
2an-1+n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
5 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com