【題目】某基地蔬菜大棚采用無土栽培方式種植各類蔬菜.根據(jù)過去50周的資料顯示,該基地周光照量(小時)都在30小時以上,其中不足50小時的有5周,不低于50小時且不超過70小時的有35周,超過70小時的有10周.根據(jù)統(tǒng)計,該基地的西紅柿增加量(千克)與使用某種液體肥料的質(zhì)量(千克)之間的關(guān)系如圖所示.
(1)依據(jù)上圖,是否可用線性回歸模型擬合與的關(guān)系?請計算相關(guān)系數(shù)并加以說明(精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀運行臺數(shù)受周光照量限制,并有如下關(guān)系:
周光照量(單位:小時) | |||
光照控制儀運行臺數(shù) | 3 | 2 | 1 |
若某臺光照控制儀運行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損1000元.以頻率作為概率,商家欲使周總利潤的均值達到最大,應(yīng)安裝光照控制儀多少臺?
附:相關(guān)系數(shù)公式,
參考數(shù)據(jù):,.
【答案】(1),可用線性回歸模型擬合與的關(guān)系;(2)2臺.
【解析】
(1)根據(jù)公式得到相關(guān)系數(shù)的值,通過比較得到判斷;(2)分別求出安裝一臺,兩臺,三臺時的利潤均值,得到結(jié)果.
(1)由已知數(shù)據(jù)可得,.
∵,
,
.
∴相關(guān)系數(shù) .
∵,∴可用線性回歸模型擬合與的關(guān)系.
(2)記商家周總利潤為元,由條件可知至少需安裝1臺,最多安裝3臺光照控制儀.
①安裝1臺光照控制儀可獲得周總利潤3000元.
②安裝2臺光照控制儀的情形:
當時,只有1臺光照控制儀運行,此時周總利潤(元),
,
當時,2臺光照控制儀都運行,此時周總利潤(元),
,
故的分布列為
2000 | 6000 | |
0.2 | 0.8 |
∴(元).
③安裝3臺光照控制儀的情形:
當時,只有1臺光照控制儀運行,
此時周總利潤(元),
,
當時,有2臺光照控制儀運行,此時周總利潤(元),
,
當時,3臺光照控制儀都運行,
周總利潤(元),
,
故的分布列為
1000 | 5000 | 9000 | |
0.2 | 0.7 | 0.1 |
∴(元).
綜上可知,為使商家周總利潤的均值達到最大,應(yīng)該安裝2臺光照控制儀.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論中:①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°.
其中正確的有____________(把所有正確的序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標原點,兩焦點分別為雙曲線的頂點,直線與橢圓交于A,B兩點,且點A的坐標為,點Р是橢圓上異于A,B的任意一點,點Q滿足,,且A,B,Q三點不共線.
(1)求橢圓的方程;
(2)求點Q的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)和,設(shè),,若存在,使得,則稱與互為“零點相鄰函數(shù)”.若函數(shù)與互為“零點相鄰函數(shù)”,則實數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為2的切直線MN于點P,射線PK從PN出發(fā)繞點P逆時針方向旋轉(zhuǎn)到PM,旋轉(zhuǎn)過程中,PK交于點Q,設(shè)為x,弓形PmQ的面積為,那么的圖象大致是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了至月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
晝夜溫差 | ||||||
就診人數(shù)(個) | 16 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是月與月的兩組數(shù)據(jù),請根據(jù)至月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司培訓(xùn)員工某項技能,培訓(xùn)有如下兩種方式:
方式一:周一到周五每天培訓(xùn)1小時,周日測試
方式二:周六一天培訓(xùn)4小時,周日測試
公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達標的人數(shù)如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進行培訓(xùn),分別估計員工受訓(xùn)的平均時間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?
在甲乙兩組中,從第三周培訓(xùn)后達標的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非零復(fù)數(shù),,;若,,滿足,.
(1)求的值;
(2)若所對應(yīng)點在圓,求所對應(yīng)的點的軌跡;
(3)是否存在這樣的直線,對應(yīng)點在上,對應(yīng)點也在直線上?若存在,求出所有這些直線;若不存在,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com