【題目】已知函數(shù)滿足.
(1)若的定義域?yàn)?/span>,且對定義域內(nèi)所有都成立,求;
(2)若的定義域?yàn)?/span>時(shí),求的值域;
(3)若的定義域?yàn)?/span>,設(shè)函數(shù),當(dāng)時(shí),求的最小值.
【答案】(1)-2(2)[-3,-2](3)①a∈[0.5,1.5] ,最小值 ; ②a>1.5,最小值a-1.25
【解析】
(1)根據(jù)函數(shù)滿足,求出和,再代入可得;
(2)根據(jù)(1)求得的以及定義域,分析可得值域;
(3)將(1)求得的代入可得,再分類討論可得最小值.
(1)因?yàn)?/span>,
所以,
所以
,
所以.
(2)因?yàn)?/span>,
所以,
所以,
所以,
所以,
即的值域的值域?yàn)?/span>.
(3)
,
①當(dāng)且時(shí),
,
因?yàn)?/span>,所以,
所以在和上單調(diào)遞增,
所以,
②當(dāng)時(shí),,,
如果,即時(shí),在上為遞減函數(shù),
所以,
如果,即時(shí),,
因?yàn)楫?dāng) 時(shí),,即,
綜上所述:當(dāng)時(shí),的最小值為;
當(dāng)時(shí),的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐P﹣ABC中,△ABC為等邊三角形,PA=PB=PC=2,PA⊥PB,三棱錐P﹣ABC的外接球的表面積為( )
A.48π
B.12π
C.4 π
D.32 π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)偶函數(shù)f(x)在[0,+∞)單調(diào)遞增,則使得f(x)>f(2x﹣1)成立的x的取值范圍是( )
A.( ,1)
B.(﹣∞, )∪(1,+∞)??
C.(﹣ , )
D.(﹣∞,﹣ )∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,四點(diǎn),,,中恰有兩個(gè)點(diǎn)為橢圓的頂點(diǎn),一個(gè)點(diǎn)為橢圓的焦點(diǎn).
(1)求橢圓的方程;
(2)若斜率為1的直線與橢圓交于不同的兩點(diǎn),且,求直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的普通方程為在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.Ⅰ寫出圓C的參數(shù)方程和直線l的直角坐標(biāo)方程;Ⅱ設(shè)直線l與x軸和y軸的交點(diǎn)分別為A、B,P為圓C上的任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,a,b,c分別是角A、B、C的對邊,向量 =(2sinB,2﹣cos2B), =(2sin2( + ),﹣1)且 ⊥ .
(1)求角B的大;
(2)若a= ,b=1,求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A、B、C所對的邊分別為a、b、c,且2acosB=3b﹣2bcosA.
(1)求 的值;
(2)設(shè)AB的中垂線交BC于D,若cos∠ADC= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}與{bn}滿足:①a1=a<0,b1=b>0,②當(dāng)k≥2時(shí),若ak﹣1+bk﹣1≥0,則ak=ak﹣1 , bk= ;若ak﹣1+bk﹣1<0,則ak= ,bk=bk﹣1 .
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)設(shè)Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 對任意正整數(shù)k,當(dāng)2≤k≤n時(shí),恒有bk﹣1>bk , 求n的最大值(用a,b表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com