在某校組織的一次籃球定點投籃測試中,規(guī)定每人最多投次,每次投籃的結(jié)果相互獨立.在處每投進一球得分,在處每投進一球得分,否則得分. 將學(xué)生得分逐次累加并用表示,如果的值不低于分就認為通過測試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃的方案有以下兩種:方案1:先在處投一球,以后都在處投;方案2:都在處投籃.甲同學(xué)在處投籃的命中率為,在處投籃的命中率為.

(Ⅰ)甲同學(xué)選擇方案1.

求甲同學(xué)測試結(jié)束后所得總分等于4的概率;

求甲同學(xué)測試結(jié)束后所得總分的分布列和數(shù)學(xué)期望;

(Ⅱ)你認為甲同學(xué)選擇哪種方案通過測試的可能性更大?說明理由.

 

【答案】

(Ⅰ)0.32  (Ⅱ)甲同學(xué)應(yīng)選擇方案2通過測試的概率更大

【解析】

試題分析:(Ⅰ)在處投籃命中記作,不中記作;在處投籃命中記作,不中記作

甲同學(xué)測試結(jié)束后所得總分為4可記作事件,則

           

解:的所有可能取值為,則

 

      

的分布列為:

   0

2

3

4

0.02

0.16

0.5

0.32

7分

,             

(Ⅱ)解:甲同學(xué)選擇方案1通過測試的概率為,選擇方案2通過測試的概率為 ,

=

因為                         

所以 甲同學(xué)應(yīng)選擇方案2通過測試的概率更大.

考點:古典概型及其概率計算公式;離散型隨機變量的期望與方差.

點評:本小題主要考查古典概型及其概率計算,考查取有限個值的離散型隨機變量及其分布列和均值的概念,通過設(shè)置密切貼近現(xiàn)實生活的情境,考查概率思想的應(yīng)用意識和創(chuàng)新意識.體現(xiàn)數(shù)學(xué)的科學(xué)價值.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在某校組織的一次籃球定點投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進一球得3分,在B處每投進一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次,某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2,該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:
ξ 0 2   3 4 5
 p 0.03   0.24 0.01 0.48 0.24
(1)求q2的值;
(2)求隨機變量ξ的數(shù)學(xué)期望Eξ;
(3)試比較該同學(xué)選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某校組織的一次籃球定點投籃比賽中,兩人一對一比賽規(guī)則如下:若某人某次投籃命中,則由他繼續(xù)投籃,否則由對方接替投籃.現(xiàn)由甲、乙兩人進行一對一投籃比賽,甲和乙每次投籃命中的概率分別是
1
3
,
1
2
.兩人共投籃3次,且第一次由甲開始投籃.假設(shè)每人每次投籃命中與否均互不影響.
(Ⅰ)求3次投籃的人依次是甲、甲、乙的概率;
(Ⅱ)若投籃命中一次得1分,否則得0分.用ξ表示甲的總得分,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南開區(qū)二模)在某校組織的一次籃球定點投籃測試中,規(guī)定每人最多投3次.每次投籃的結(jié)果相互獨立.在A處每投進一球得3分,在B處每投進一球得2分,否則得0分.將學(xué)生得分逐次累加并用ξ表示,如果ξ的值不低于3分就認為通過測試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃的方案有以下兩種:方案1:先在A處投一球,以后都在B處投:方案2:都在B處投籃.甲同學(xué)在A處投籃的命中率為0.5,在B處投籃的命中率為0.8.
(1)當甲同學(xué)選擇方案1時.
①求甲同學(xué)測試結(jié)束后所得總分等于4的概率:
②求甲同學(xué)測試結(jié)束后所得總分ξ的分布列和數(shù)學(xué)期望Eξ;
(2)你認為甲同學(xué)選擇哪種方案通過測試的可能性更大?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某校組織的一次籃球定點投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進一球得3分,在B處每投進一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次,某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2,該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為
  ξ 0 2    3    4    5
        p 0.03    P1    P2 P3 P4
(1)求q2的值;
(2)求隨機變量ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某校組織的一次籃球定點投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每次投進一球得3分,在B處每投進一球得2分,如果前兩次得分之和超過3分即停止投籃,否則投第三次,某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2,該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,ξ=0的概率為0.03.
(1)寫出ξ值所有可能的值;
(2)求q2的值;
(3)求得到總分最大值的概率.

查看答案和解析>>

同步練習(xí)冊答案