【題目】已知橢圓的離心率為,四個頂點(diǎn)構(gòu)成的菱形的面積是4,圓過橢圓的上頂點(diǎn)作圓的兩條切線分別與橢圓相交于兩點(diǎn)(不同于點(diǎn)),直線的斜率分別為.

(1)求橢圓的方程;

(2)當(dāng)變化時,①求的值;②試問直線是否過某個定點(diǎn)?若是,求出該定點(diǎn);若不是,請說明理由.

【答案】(1);(2)見解析.

【解析】試題分析:(1)由題設(shè)知, , ,又,解得,由此可得求橢圓的方程;2,則有,化簡得,對于直線,同理有,于是是方程的兩實(shí)根,故,即可證明結(jié)果;②考慮到時, 是橢圓的下頂點(diǎn), 趨近于橢圓的上頂點(diǎn),故若過定點(diǎn),則猜想定點(diǎn)在軸上.

,得,于是有,直線的斜率為,直線的方程為,令,得,即可證明直線過定點(diǎn).

試題解析:(1)由題設(shè)知, , ,又

解得.

故所求橢圓的方程是.

2,則有,化簡得,

對于直線,同理有

于是是方程的兩實(shí)根,故.

考慮到時, 是橢圓的下頂點(diǎn), 趨近于橢圓的上頂點(diǎn),故若過定點(diǎn),則猜想定點(diǎn)在軸上.

,得,于是有.

直線的斜率為,

直線的方程為

,得

故直線過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x+b經(jīng)過定點(diǎn)(2,8)
(1)求實(shí)數(shù)b的值;
(2)求不等式f(x)> 的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣2x+6y=0,則圓心P及半徑r分別為(
A.圓心P(1,3),半徑r=10
B.圓心P(1,3),半徑
C.圓心P(1,﹣3),半徑r=10
D.圓心P(1,﹣3),半徑

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,四個頂點(diǎn)構(gòu)成的菱形的面積是4,圓過橢圓的上頂點(diǎn)作圓的兩條切線分別與橢圓相交于兩點(diǎn)(不同于點(diǎn)),直線的斜率分別為.

(1)求橢圓的方程;

(2)當(dāng)變化時,①求的值;②試問直線是否過某個定點(diǎn)?若是,求出該定點(diǎn);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:mx﹣y=0,l2:x+my﹣m﹣2=0.
(1)求證:對m∈R,l1與l2的交點(diǎn)P在一個定圓上;
(2)若l1與定圓的另一個交點(diǎn)為P1 , l2與定圓的另一個交點(diǎn)為P2 , 求當(dāng)m在實(shí)數(shù)范圍內(nèi)取值時,△PP1P2的面積的最大值及對應(yīng)的m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B.若p:?x0∈R,x02﹣x0﹣1>0,則¬p:?x∈R,x2﹣x﹣1<0
C.若p∧q為假命題,則p,q均為假命題
D.“若α= ,則sinα= ”的否命題是“若α≠ ,則sinα≠

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形, ,點(diǎn)的中點(diǎn).

(1)證明: ;

(2)設(shè)點(diǎn)在線段上,且平面,若平面平面,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(1)求a,b的值;
(2)判斷并證明函數(shù)y=f(x)在區(qū)間(﹣1,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),( )為定義域上的增函數(shù), 是函數(shù)的導(dǎo)數(shù),且的最小值小于等于0.

(1)求的值;

(2)設(shè)函數(shù),且,求證: .

查看答案和解析>>

同步練習(xí)冊答案