18.(1)${({\frac{1}{8}})^{-\frac{2}{3}}}-\root{4}{{{{({-3})}^4}}}+{({2\frac{1}{4}})^{\frac{1}{2}}}-{(1.5)^2}$
(2)${log_3}\sqrt{27}+lg25+lg4+{7^{{{log}_7}2}}+{(-9.8)^0}$.

分析 (1)利用有理指數(shù)冪的運(yùn)算法則化簡求解即可.
(2)利用對數(shù)運(yùn)算法則以及有理指數(shù)冪的運(yùn)算法則化簡求解即可.

解答 解:(1)${(\frac{1}{8})}^{-\frac{2}{3}}-\root{4}{{(-3)}^{4}}+{(2\frac{1}{4})}^{\frac{1}{2}}-{(1.5)}^{2}$=4-3+$\frac{3}{2}$-$\frac{9}{4}$=$\frac{1}{4}$
(2)$lo{g}_{3}\sqrt{27}+lg25+lg4+{7}^{{log}_{7}2}+{(-9.8)}^{0}$=$\frac{3}{2}$+lg100+2+1=$\frac{13}{2}$.

點評 本題考查對數(shù)運(yùn)算法則以及有理指數(shù)冪的運(yùn)算法則的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知{an}是各項項都為正數(shù)的數(shù)列,其前n項和為Sn,且滿足2anSn-an2=1
(Ⅰ)證明{Sn2}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{Sn2xn-1}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{2}$x2-alnx(a為常數(shù)且a∈R).
(1)當(dāng)a=1時求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x>1時,若$\frac{1}{2}$x2+lnx+b<$\frac{2}{3}$x3恒成立,求實常數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)$f(x)={({\frac{1}{2}})^x}$在區(qū)間[0,1]上的最大值與最小值的和為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.過坐標(biāo)原點且與點($\sqrt{3}$,1)的距離都等于1的兩條直線的夾角為(  )
A.90°B.45°C.30°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知動點P在圓x2+y2=4上運(yùn)動,過點P作x軸的垂線段,垂足為D,求線段PD的中點M的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.過拋物線y2=4x的焦點F作圓C:x2+y2-8x+m=0的切線,切點為M、N,且|MN|=$\frac{4\sqrt{2}}{3}$.
(1)求實數(shù)m的值:
(2)若m>12,直線l經(jīng)過點F,與拋物線交于點A、B,是否存在直線l,使AB為直徑的圓與圓C外切,若存在,求出直線l的方程;若不存在,請說明則由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知曲線C:$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$,直線l:$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$(t為參數(shù)).
(1)求曲線C,直線l的普通方程;
(2)直線1與曲線C交于P,Q兩點,求|PQ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)=kx3+$\frac{2}{x}$-2(k∈R),f(lg5)=1,則f(lg$\frac{1}{5}$)=-5.

查看答案和解析>>

同步練習(xí)冊答案