(13分)某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)=x2+10x(萬元);當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)=51x+-1 450(萬元).每件商品售價(jià)為0.05萬元.通過市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(rùn)L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
(1)L(x)=(2)產(chǎn)量為100千件時(shí),該廠在這一商品中所獲利潤(rùn)最大,最大利潤(rùn)為1000萬元.
【解析】(1)因?yàn)?/span>每件商品售價(jià)為0.05萬元,則x千件商品銷售額為0.05×1000x萬元,依題意得,
當(dāng)0<x<80時(shí),L(x)=(0.05×1000x)-x2-10x-250=-x2+40x-250;
當(dāng)x≥80時(shí),L(x)=(0.05×1000x)-51x-+1 450-250=1200-.
所以L(x)=
(2)當(dāng)0<x<80時(shí),L(x)=-(x-60)2+950,.
此時(shí),當(dāng)x=60時(shí),L(x)取得最大值L(60)=950(萬元);
當(dāng)x≥80時(shí),L(x)=1200-≤1200-
2 =1200-200=1000,
當(dāng)x=,即x=100時(shí),L(x)取得最大值1000萬元.
因?yàn)?/span>950<1000,
所以,當(dāng)產(chǎn)量為100千件時(shí),該廠在這一商品中所獲利潤(rùn)最大,最大利潤(rùn)為1000萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題1第1課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知集合A={x|log2x<1},B={x|0<x<c,其中c>0}.若A∪B=B,則c的取值范圍是( )
A.(0,1] B.[1,+∞)
C.(0,2] D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:填空題
若不等式x2+2xy≤a(x2+y2)對(duì)于一切正數(shù)x,y恒成立,則實(shí)數(shù)a的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題五練習(xí)卷(解析版) 題型:填空題
若一個(gè)球的體積為4π,則它內(nèi)接正方體的表面積是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題五練習(xí)卷(解析版) 題型:選擇題
網(wǎng)格紙中的小正方形邊長(zhǎng)為1,一個(gè)正三棱錐的側(cè)視圖如圖所示,則這個(gè)正三棱錐的體積為( )
A. B.3 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題二練習(xí)卷(解析版) 題型:選擇題
設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(2-x)f′(x)的圖像如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(1)和極小值f(-1)
B.函數(shù)f(x)有極大值f(1)和極小值f(2)
C.函數(shù)f(x)有極大值f(2)和極小值f(1)
D.函數(shù)f(x)有極大值f(-1)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題三練習(xí)卷(解析版) 題型:解答題
函數(shù)f(x)=sin(ωx+φ)ω>0,|φ|<的部分圖像如圖Z3-4所示,將y=f(x)的圖像向右平移個(gè)單位長(zhǎng)度后得到函數(shù)y=g(x)的圖像.
(1)求函數(shù)y=g(x)的解析式;
(2)在△ABC中,它的三個(gè)內(nèi)角滿足2sin2=gC++1,且其外接圓半徑R=2,求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題七練習(xí)卷(解析版) 題型:解答題
某種報(bào)紙,進(jìn)貨商當(dāng)天以每份1元從報(bào)社購進(jìn),以每份2元售出.若當(dāng)天賣不完,剩余報(bào)紙報(bào)社以每份0.5元的價(jià)格回收.根據(jù)市場(chǎng)統(tǒng)計(jì),得到這個(gè)季節(jié)的日銷售量X(單位:份)的頻率分布直方圖(如圖所示),將頻率視為概率.
(1)求頻率分布直方圖中a的值;
(2)若進(jìn)貨量為n(單位:份),當(dāng)n≥X時(shí),求利潤(rùn)Y的表達(dá)式;
(3)若當(dāng)天進(jìn)貨量n=400,求利潤(rùn)Y的分布列和數(shù)學(xué)期望E(Y)(統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集9講練習(xí)卷(解析版) 題型:選擇題
在各項(xiàng)都為正數(shù)的等比數(shù)列{an}中,a1=2,a6=a1a2a3,則公比q的值為( )
A. B. C.2 D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com