(2010•宿松縣三模)如圖所示為函數(shù)f(x)=2cos(ωx+φ)(ω>0,0≤φ≤π)的部分圖象,其中  |
AB
|=5
,那么ω和φ的值分別為( 。
分析:先確定函數(shù)的周期,由圖可知|
AB
|=5
,AB間的縱向距離為4,故可由勾股定理計算AB間的橫向距離,即半個周期,進而得ω值,再利用函數(shù)圖象過點(0,1),且此點在減區(qū)間上,代入函數(shù)解析式即可計算φ值
解答:解:由圖可知函數(shù)的振幅為2,半周期為AB間的橫向距離,
T
2
=
52-42
=3,
∴T=6,即
ω
=6
∴ω=
π
3

由圖象知函數(shù)過點(0,1)
∴1=2cosφ
∴φ=2kπ+
π
3
,k∈Z
∵0≤φ≤π
∴φ=
π
3
,
故選B
點評:本題考查了三角函數(shù)的圖象和性質(zhì),由y=Asin(ωx+φ)的部分圖象確定其解析式的方法,三角函數(shù)周期,初相的意義
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿松縣三模)在△ABC中,G是△ABC的重心,且a
GA
+b
GB
+
3
3
c
GC
=
0
,其中a,b,c分別是∠A,∠B,∠C的對邊,則∠A=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿松縣三模)如圖,設(shè)F是橢圓:C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦點,直線l為其左準(zhǔn)線,直線l與x軸交于點P,線段MN為橢圓的長軸,已知|MN|=8,且|PM|=2|MF|.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過點P的直線與橢圓相交于不同兩點A,B,求證:∠AFM=∠BFN;
(3)(理)求三角形ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿松縣三模)已知an=sin
6
+
16
2+sin
6
(n∈N*)
,則數(shù)列{an}的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿松縣三模)以下四圖,都是同一坐標(biāo)系中三次函數(shù)及其導(dǎo)函數(shù)的圖象,其中一定不正確的序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿松縣三模)已知函數(shù)f(x)=loga+2[ax2+(a+2)x+a+2]有最值,則a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案