對(duì)于定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122109014701636439/SYS201312210902597197542816_ST.files/image001.png">的函數(shù),如果存在區(qū)間,同時(shí)滿足:
①在內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是,值域也是,則稱是函數(shù)
的“好區(qū)間”.
(1)設(shè)(其中且),判斷是否存在“好區(qū)間”,并
說(shuō)明理由;
(2)已知函數(shù)有“好區(qū)間”,當(dāng)變化時(shí),求的最大值.
(1)不存在“好區(qū)間”;(2)的最大值為.
【解析】
試題分析:(1)先求出的定義域.可知要對(duì)分情況討論,當(dāng)時(shí),定義域,在內(nèi)是增函數(shù);當(dāng)時(shí),定義域,在內(nèi)還是增函數(shù).從而得出,即方程在定義域內(nèi)有兩個(gè)不等的實(shí)數(shù)根,即在定義域內(nèi)有兩個(gè)不等的實(shí)數(shù)根.再用換元法,設(shè),則相當(dāng)于兩個(gè)不等的實(shí)數(shù)根,即在內(nèi)有兩個(gè)不等的實(shí)數(shù)根,通過(guò)研究二次函數(shù),發(fā)現(xiàn)在內(nèi)有兩個(gè)不等的實(shí)數(shù)根無(wú)解,所以函數(shù)不存在“好區(qū)間”;(2)函數(shù)有“好區(qū)間”,由于定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122109014701636439/SYS201312210902597197542816_DA.files/image022.png">,或,易知函數(shù)在上單調(diào)遞增,,所以是方程,即方程有同號(hào)的相異實(shí)數(shù)根,然后再用判別式求出的范圍,再用韋達(dá)定理用表示出,結(jié)合的范圍即可求出的最大值.
試題解析:(1)由. 2分
①當(dāng)時(shí),,此時(shí)定義域,,,
,,,
,,
,
在內(nèi)是增函數(shù); 4分
②當(dāng)時(shí),,此時(shí)定義域,
同理可證在內(nèi)是增函數(shù); 6分
存在“好區(qū)間”,
關(guān)于的方程在定義域內(nèi)有兩個(gè)不等的實(shí)數(shù)根.
即在定義域內(nèi)有兩個(gè)不等的實(shí)數(shù)根.(*)
設(shè),則(*),
即在內(nèi)有兩個(gè)不等的實(shí)數(shù)根,
設(shè),則無(wú)解.
所以函數(shù)不存在“好區(qū)間”. 8分
(2)由題設(shè),函數(shù)有“好區(qū)間”,
或,函數(shù)在上單調(diào)遞增,
,所以是方程,即方程有同號(hào)的相異實(shí)數(shù)根. 12分
,同號(hào),或.
,.
當(dāng),取得最大值. 16分
考點(diǎn):1.函數(shù)的單調(diào)性;2.二次函數(shù)根的分布;3.韋達(dá)定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于定義域?yàn)?img width=18 height=18 src="http://thumb.zyjl.cn/pic1/1899/sx/109/87309.gif">的函數(shù),若同時(shí)滿足:①在內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間,使在上的值域?yàn)?img width=38 height=22 src="http://thumb.zyjl.cn/pic1/1899/sx/116/87316.gif">;那么把函數(shù)()叫做閉函數(shù).
(1) 求閉函數(shù)符合條件②的區(qū)間;
(2) 若是閉函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)定義:對(duì)于函數(shù),.若對(duì)定義域內(nèi)的恒成立,則稱函數(shù)為函數(shù).(1)請(qǐng)舉出一個(gè)定義域?yàn)?img width=53 height=27 src="http://thumb.zyjl.cn/pic1/1899/sx/120/241520.gif">的函數(shù),并說(shuō)明理由;(2)對(duì)于定義域?yàn)?img width=47 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/122/241522.gif">的函數(shù),求證:對(duì)于定義域內(nèi)的任意正數(shù),均有;
(3)對(duì)于值域的函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆上海市盧灣區(qū)高考模擬考試數(shù)學(xué)試卷(理科) 題型:解答題
對(duì)于定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/94/5/1kxho2.gif" style="vertical-align:middle;" />的函數(shù),若有常數(shù)M,使得對(duì)任意的,存在唯一的滿足等式,則稱M為函數(shù)f (x)的“均值”.
(1)判斷1是否為函數(shù)≤≤的“均值”,請(qǐng)說(shuō)明理由;
(2)若函數(shù)為常數(shù))存在“均值”,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)是單調(diào)函數(shù),且其值域?yàn)閰^(qū)間I.試探究函數(shù)的“均值”情況(是否存在、個(gè)數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫出你的結(jié)論(不必證明).
說(shuō)明:對(duì)于(3),將根據(jù)結(jié)論的完整性與一般性程度給予不同的評(píng)分
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
對(duì)于定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013101223370428516510/SYS201310122337272876847093_ST.files/image001.png">的函數(shù),若存在區(qū)間,使得則稱區(qū)間M為函數(shù)的“等值區(qū)間”.給出下列三個(gè)函數(shù):
①; ②; ③
則存在“等值區(qū)間”的函數(shù)的個(gè)數(shù)是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市崇明縣高三第一學(xué)期期末考試數(shù)學(xué) 題型:填空題
定義:對(duì)于定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052412405896874207/SYS201205241242016875414740_ST.files/image001.png">的函數(shù),如果存在,使得成立,稱函數(shù)在上是“”函數(shù)。已知下列函數(shù):①;、;③();、,其中屬于“”函數(shù)的序號(hào)是 .(寫出所有滿足要求的函數(shù)的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com