如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AB∥DC,已知BD=2AD=2PD=8,AB=2DC=4

(Ⅰ)設(shè)M是PC上一點(diǎn),證明:平面MBD⊥平面PAD;

(Ⅱ)若M是PC的中點(diǎn),求棱錐P-DMB的體積.

 

【答案】

(Ⅰ)詳見解析;(Ⅱ)

【解析】

試題分析:(Ⅰ)要證明平面平面,只需證明一個(gè)平面過另一個(gè)平面的垂線,因?yàn)镸是PC上一點(diǎn),不確定,故證明平面,顯然易證;(Ⅱ)求棱錐P-DMB的體積,直接求,底面面積及高都不好求,但注意到棱錐P-DMB是棱錐P-DCB除去一個(gè)小棱錐M-DCB而得到,而這兩個(gè)棱錐的體積都容易求,值得注意的是,當(dāng)一個(gè)幾何體的體積不好求時(shí),可進(jìn)行轉(zhuǎn)化成其它幾何體來求.

試題解析:(I)證明:在中,由于,所以.故。又平面平面平面,所以平面,又平面,故平面平面;

(II)過的中點(diǎn),

考點(diǎn):本小題考查面面垂直的判定、線面垂直的判定,面面垂直的性質(zhì)定理應(yīng)用;,以及棱錐的體積公式,考查學(xué)生的化歸與轉(zhuǎn)化能力以及空間想象能力.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,且PD=a,PA=PC=
2
a
,
(1)求證:PD⊥平面ABCD;(2)求二面角A-PB-D的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=
90°,側(cè)面PAD⊥底面ABCD.若PA=AB=BC=
12
AD.
(Ⅰ)求證:CD⊥平面PAC;
(Ⅱ)側(cè)棱PA上是否存在點(diǎn)E,使得BE∥平面PCD?若存在,指出點(diǎn)E的位置并證明,若不存在,請(qǐng)說明理由;
(Ⅲ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD為等腰梯形,AB∥CD,AD=BC=2,對(duì)角線AC⊥BD于O,∠DAO=60°,且PO⊥平面ABCD,直線PA與底面ABCD所成的角為60°,M為PD上的一點(diǎn).
(Ⅰ)證明:PD⊥AC;
(Ⅱ)求二面角A-PB-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明PB⊥平面EFD;
(2)求二面角C-PB-D的大。
(3)求點(diǎn)A到面EBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E,F(xiàn)分別是AB,PB的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)設(shè)PD=AD=a,求三棱錐B-EFC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案