|
(1) |
解:∵平面平面,AE⊥EF,∴AE⊥面平面,AE⊥EF,AE⊥BE,又BE⊥EF,故可建立空間坐標(biāo)系E-xyz.則A(0,0,2),B(2,0,0),G(2,2,0), D(0,2,2),E(0,0,0) (-2,2,2)(2,2,0) (-2,2,2)(2,2,0)=0,∴……4分; |
(2) |
解:∵AD∥面BFC,VA-BFC==·4·(4-x)·x 即時(shí)有最大值為.……8分 |
(3) |
解:設(shè)平面DBF的法向量為,∵AE=2,B(2,0,0),D(0,2,2), F(0,3,0),∴(-2,2,2), 則,即, 取x=3,則y=2,z=1,∴……11分 面BCF的一個(gè)法向量為 則cos<>=……13分 二面角D-BF-C的平面角為π-arccos……14分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
a |
2 |
a |
2 |
a |
2 |
2 |
3π |
4 |
2 |
3π |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,已知圓的方程是(x-1)2+y2=1,四邊形PABQ為該圓內(nèi)接梯形,底邊AB為圓的直徑且在x軸上,以A,B為焦點(diǎn)的橢圓C過P,Q兩點(diǎn).
(1)若直線QP與橢圓C的右準(zhǔn)線相交于點(diǎn)M,求點(diǎn)M的軌跡方程;
(2)當(dāng)梯形PABQ周長(zhǎng)最大時(shí),求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年陜西省西安市高三第三次質(zhì)檢數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com