分析 在AB上取點D,使得AD=$\frac{1}{3}$AB=2,連結CD.則|AM|的最小值為A到直線CD的距離.
解答 解:在AB上取點D,使得AD=$\frac{1}{3}$AB=2,連結CD.
則$\overrightarrow{AM}$=3x$\overrightarrow{AD}+y\overrightarrow{AC}$,
∵3x+y=1,
∴C,M,D三點共線,
∴|AM|的最小值為A到直線CD的距離,
∵AC=AD=2,∠BAC=$\frac{2π}{3}$,
∴A到CD的距離d=$\frac{1}{2}$AD=1.
故答案為:1.
點評 本題考查了平面向量的基本定理,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com