【題目】隨著網(wǎng)購人數(shù)的日益增多,網(wǎng)上的支付方式也呈現(xiàn)一種多樣化的狀態(tài),越來越多的便捷移動支付方式受到了人們的青睞,更被網(wǎng)友們評為“新四大發(fā)明”之一.隨著人們消費觀念的進步,許多人喜歡用信用卡購物,考慮到這一點,一種“網(wǎng)上的信用卡”橫空出世——螞蟻花唄.這是一款支付寶和螞蟻金融合作開發(fā)的新支付方式,簡單便捷,同時也滿足了部分網(wǎng)上消費群體在支付寶余額不足時的“賒購”消費需求.為了調(diào)查使用螞蟻花唄“賒購”消費與消費者年齡段的關系,某網(wǎng)站對其注冊用戶開展抽樣調(diào)查,在每個年齡段的注冊用戶中各隨機抽取100人,得到各年齡段使用螞蟻花唄“賒購”的人數(shù)百分比如圖所示.

1)由大數(shù)據(jù)可知,在1844歲之間使用花唄“賒購”的人數(shù)百分比y與年齡x成線性相關關系,利用統(tǒng)計圖表中的數(shù)據(jù),以各年齡段的區(qū)間中點代表該年齡段的年齡,求所調(diào)查群體各年齡段“賒購”人數(shù)百分比y與年齡x的線性回歸方程(回歸直線方程的斜率和截距保留兩位有效數(shù)字);

2)該網(wǎng)站年齡為20歲的注冊用戶共有2000人,試估算該網(wǎng)站20歲的注冊用戶中使用花唄“賒購”的人數(shù);

3)已知該網(wǎng)店中年齡段在18-26歲和27-35歲的注冊用戶人數(shù)相同,現(xiàn)從1835歲之間使用花唄“賒購”的人群中按分層抽樣的方法隨機抽取8人,再從這8人中簡單隨機抽取2人調(diào)查他們每個月使用花唄消費的額度,求抽取的兩人年齡都在1826歲的概率.

參考答案:,.

【答案】1;(21080人;(3.

【解析】

1)根據(jù)公式計算出,后可得;

2)將代入,進而可得;

3)根據(jù)分層抽樣可知隨機抽取8人,年齡在1826歲之間有5人,年齡在27-35之間有3人,再根據(jù)古典概型的概率公式計算可得結(jié)果.

1)由題意,,,

所以,

,所求線性回歸方程為.

2)由(1)知,該網(wǎng)站20歲的注冊用戶中使用花唄“賒購”的人數(shù)百分比為,而,

所以估計該網(wǎng)站20歲的注冊用戶中使用花唄“賒購”的人數(shù)為1080.

3)依題意,隨機抽取8人,年齡在1826歲之間有5人,年齡在27-35之間有3人,所以抽取的兩人年齡都在1826歲的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點分別為,為橢圓上異于長軸端點的點,且的最大面積為.

1)求橢圓的標準方程

2)若直線是過點點的直線,且與橢圓交于不同的點、,是否存在直線使得點、到直線,的距離、,滿足恒成立,若存在,求的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有一塊廢棄的半圓形鋼板,其右下角一小部分因生銹無法使用,其形狀如圖所示,已知該鋼板的圓心為,線段為其下沿,且,.現(xiàn)欲從中截取一個四邊形,其要求如下:點均在圓弧上,平分,且,垂足在邊.,四邊形的面積為.

1)求關于的函數(shù)解析式,并寫出其定義域;

2)當為何值時,四邊形的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCDBDEF均為菱形,,且

求證:平面BDEF;

求直線AD與平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖四棱柱中,,,,M的中點.

1)證明:平面;

2)若四邊形是菱形,且面,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于的不等式有且僅有兩個正整數(shù)解(其中e=2.71828… 為自然對數(shù)的底數(shù)),則實數(shù)的取值范圍是( )

A. ,] B. ,] C. [, D. [

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,平面底面,是等邊三角形,底面是菱形,且,為棱的中點,為菱形的中心,下列結(jié)論正確的有(

A.直線與平面平行B.直線與直線垂直

C.線段與線段長度相等D.所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的右焦點為,下頂點為P,過點的動直線l交橢圓CA,B兩點.

1)當直線l平行于x軸時,P,F,A三點共線,且,求橢圓C的方程;

2)當橢圓C的離心率為何值時,對任意的動直線l,總有?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),對于任意的實數(shù),恒成立.

1)求的值;

2)若,求證:.

查看答案和解析>>

同步練習冊答案