關(guān)于x的不等式Cx2•C52≥200(x≥2)成立的最小正整數(shù)為________.

20
分析:由Cx2•C52=(x≥2),知x2-x-40≥0,由此能求出關(guān)于x的不等式Cx2•C52≥200(x≥2)成立的最小正整數(shù).
解答:∵Cx2•C52=(x≥2),
∴x2-x-40≥0,
解得x(舍),或x
∴關(guān)于x的不等式Cx2•C52≥200(x≥2)成立的最小正整數(shù)是20.
故答案為:20.
點評:本昰考查組合及組合數(shù)公式的計算,解題時要認真審題,仔細解答,注意組合數(shù)公式的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的不等式ax2+bx+c>0的解集為{x|α<x<β,α>0}用α、β表示關(guān)于x的不等式cx2-bx+a>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c的圖象過A(t1,y1)、B(t2,y2)兩點,且滿足a2+(y1+y2)a+y1y2=0.
(1)證明y1=-a或y2=-a;
(2)證明函數(shù)f(x)的圖象必與x軸有兩個交點;
(3)若關(guān)于x的不等式f(x)>0的解集為{x|x>m或x<n,n<m<0},解關(guān)于x的不等式cx2-bx+a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式ax2+bx+c<0的解集是{x|x<-2或x>-
1
2
},則關(guān)于x的不等式cx2-bx+a>0的解集是
{x|
1
2
<x<2
}
{x|
1
2
<x<2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式Cx2•C52≥200(x≥2)成立的最小正整數(shù)為
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式ax2+bx+c>0的解集為{x|-1<x<2},則關(guān)于x的不等式cx2+bx+a>0的解集是
(-∞,-1)∪(
1
2
,+∞)
(-∞,-1)∪(
1
2
,+∞)

查看答案和解析>>

同步練習(xí)冊答案