執(zhí)行如圖所示的程序框圖,若輸入a1=2,a2=0,a3=1,a4=4,則計算機(jī)輸出的結(jié)果是( 。
A、2B、0C、1D、4
考點:程序框圖
專題:算法和程序框圖
分析:根據(jù)框圖的流程,寫出前幾次循環(huán)的結(jié)果,直到得到的n>4,退出循環(huán),輸出b的值.
解答: 解:由框圖知,開始得到:b=2,n=2,
第一次循環(huán)得到:b=2,n=3,
第二次循環(huán)得到:b=2,n=4,
第三次循環(huán)得到:b=4,n=5,退出循環(huán),輸出b的值.
故選D.
點評:本題考察查了程序框圖中的當(dāng)型循環(huán),當(dāng)型循環(huán)式先判斷后執(zhí)行,滿足條件進(jìn)入循環(huán),不滿足條件,算法結(jié)束.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為D的函數(shù)y=f(x)和常數(shù)C,若對任意正實數(shù)ξ,存在x∈D,使得0<|f(x)-c|<ξ恒成立,則稱函數(shù)y=f(x)為“斂C函數(shù)”.現(xiàn)給出如下函數(shù):
①f(x)=x(x∈Z); ②f(x)=(
1
2
x+1(x∈Z);③f(x)=log2x;
其中為“斂1函數(shù)”的有( 。
A、②B、①③C、②③D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足條件
y≥x
x+y≥0
y≤1
,則x-2y的最小值是(  )
A、-3B、-2C、-1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x∈N|y=ln(2-x)},B={x|2x(x-2)≤1},A∩B=(  )
A、{x|x≥1}
B、{x|1≤x<2}
C、{1}
D、{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,且z(1+i)=(-
1
2
+
3
2
i)3,則在復(fù)平面內(nèi),z的共軛復(fù)數(shù)對應(yīng)的點在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x=
a2
a2+b2
被雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線所截得線段的長度恰好等于其一個焦點到漸近線的距離,則此雙曲線的離心率為(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號;
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;(下面摘取了第7行到第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚撼煽兎譃閮?yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42.
①若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值:
人數(shù)數(shù)學(xué)
優(yōu)秀良好及格

地理
優(yōu)秀7205
良好9186
及格a4b
②在地理成績及格的學(xué)生中,已知a≥10,b≥8,求數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+b,
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線方程是y=x+1,求a,b的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,2)內(nèi)單調(diào)遞減.
(1)求a的取值集合A; 
(2)對任意a∈A∩[-7,+∞)和x∈[0,4],有f(x)>a2恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案