分析:根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),得到三個(gè)數(shù)字與0,1之間的大小關(guān)系,利用兩個(gè)中間數(shù)字得到結(jié)果.
解答:解:∵m>0,故3
m>3
0=1,
∴3
m=
logm>1=
log,
∴0<m<
;①
同理,
()p=log
3p>0,
∴p>1;②
∵q>0,
()q<1,(
)
q=
logq>0=
log1,
∴0<q<1;③
由于①與③目前尚不能判斷,不妨令q=
,
()q=
()=
,
令x=
logq=
log,則
()x=
,即3
x=2,而
3=
<2,
∴x>
.
∴即當(dāng)x=
時(shí),函數(shù)y=
logx的圖象在函數(shù)y=
()x圖象的上方,
∴函數(shù)y=
logx的圖象與函數(shù)y=
()x圖象的交點(diǎn)的橫坐標(biāo)即(
)
q=
logq中的q>
④
由①②④可得:p>q>m.
故選D.
點(diǎn)評:題考查對數(shù)值的大小比較,本題解題的關(guān)鍵是找出一個(gè)中間數(shù)字,使得三個(gè)數(shù)字利用中間數(shù)字隔開,難點(diǎn)在于m與q大小的比較,屬于難題.