年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:047
已知:如圖,AB為異面直線a、b的公垂線,a⊥平面a ,b⊥平面b ,a ∩b =C.求證:AB∥c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆吉林長(zhǎng)春市高二第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知,如圖,AB是⊙O的直徑,AC切⊙O于點(diǎn)A,AC=AB,CO交⊙O于點(diǎn)P,CO的延長(zhǎng)線交⊙O于點(diǎn)F, BP的延長(zhǎng)線交AC于點(diǎn)E.
⑴求證:FA∥BE;
⑵求證:
【解析】本試題主要是考查了平面幾何中圓與三角形的綜合運(yùn)用。
(1)要證明線線平行,主要是通過證明線線平行的判定定理得到
(2)利用三角形△APC∽△FAC相似,來得到線段成比列的結(jié)論。
證明:(1)在⊙O中,∵直徑AB與FP交于點(diǎn)O ∴OA=OF
∴∠OAF=∠F ∵∠B=∠F ∴∠OAF=∠B ∴FA∥BE
(2)∵AC為⊙O的切線,PA是弦 ∴∠PAC=∠F
∵∠C=∠C ∴△APC∽△FAC ∴
∴ ∵AB=AC ∴
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求證:BC⊥平面PAC;
(2)若C恰為弧的中點(diǎn),按圖中所給尺寸,計(jì)算三棱錐B—PAC的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com