直線數(shù)學公式與曲線y2=x只有一個公共點,則k=


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:當斜率k=0 時,直線y=k(x+2)+平行于x軸,與拋物線y2=x僅有一個公共點,當斜率不等于0時,把y=k(x+2)+ 代入拋物線的方程化簡,由判別式△=0求得實數(shù)k的值.
解答:當斜率k=0 時,直線y=k(x+2)+平行于x軸,與拋物線y2=x僅有一個公共點.
當斜率不等于0時,把y=k(x+2)+代入拋物線y2=x整理得ky2-y+2k+=0.
由題意可得,此方程有唯一解,
故判別式△=1-4k(2k+)=0
∴k=-或k=
綜上得:k=0,-
故選B.
點評:本題考查直線和圓錐曲線的位置關(guān)系,一元二次方程有唯一解的條件,體現(xiàn)了分類討論的數(shù)學思想.本題的易錯點在于忘記討論k=0的情況,從而得到錯誤結(jié)論.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知點A(x1,y1)在圓(x-2)2+y2=4上運動,點A不與(0,0)重合,點B(4,y0)在直線x=4上運動,動點M(x,y)滿足
OM
OB
,
OM
=
AB
.動點M的軌跡C的方程為F(x,y)=0.
(1)試用點M的坐標x,y表示y0,x1,y1;
(2)求動點M的軌跡方程F(x,y)=0;
(3)以下給出曲線C的五個方面的性質(zhì),請你選擇其中的三個方面進行研究,并說明理由.(若你研究的方面多于三個,我們將只對試卷解答中的前三項予以評分)
①對稱性;
②頂點坐標(定義:曲線與其對稱軸的交點稱為該曲線的頂點);
③圖形范圍;
④漸近線;
⑤對方程F(x,y)=0,當y≥0時,函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

請考生注意:重點高中學生只做(1)、(2)兩問,一般高中學生只做(1)、(3)兩問.
已知P是圓F1:(x+1)2+y2=16上任意一點,點F2的坐標為(1,0),直線m分別與線段F1P、F2P交于M、N兩點,且
MN
=
1
2
(
MF2
+
MP
),|
NM
+
F2P
|=|
NM
-
F2P
|

(1)求點M的軌跡C的方程;
(2)斜率為k的直線l與曲線C交于P、Q兩點,若
OP
OQ
=0
(O為坐標原點).試求直線l在y軸上截距的取值范圍;
(3)是否存在斜率為
1
2
的直線l與曲線C交于P、Q兩點,使得
OP
OQ
=0
(O為坐標原點),若存在求出直線l的方程,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•盧灣區(qū)二模)如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標不小于零,點M在直線PQ上,且滿足
HP
PM
=0
,
PM
=-
3
2
MQ

(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫出計算過程,并求出結(jié)果,若同時選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無效,不予批閱):
①將(1)中的曲線C推廣為橢圓:
x2
2
+y2=1
,并
將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:
x2
a2
+
y2
b2
=1
,并
將(2)中的定點取為原點,求與(2)相類似的問題的解.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

請考生注意:重點高中學生只做(1)、(2)兩問,一般高中學生只做(1)、(3)兩問.
已知P是圓F1:(x+1)2+y2=16上任意一點,點F2的坐標為(1,0),直線m分別與線段F1P、F2P交于M、N兩點,且
MN
=
1
2
(
MF2
+
MP
),|
NM
+
F2P
|=|
NM
-
F2P
|

(1)求點M的軌跡C的方程;
(2)斜率為k的直線l與曲線C交于P、Q兩點,若
OP
OQ
=0
(O為坐標原點).試求直線l在y軸上截距的取值范圍;
(3)是否存在斜率為
1
2
的直線l與曲線C交于P、Q兩點,使得
OP
OQ
=0
(O為坐標原點),若存在求出直線l的方程,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:福建省月考題 題型:解答題

已知點M(k,l)、P(m,n),(klmn≠0)是曲線C上的兩點,點M、N關(guān)于x軸對稱,直線MP、NP分別交x軸于點E(xE,0)和點F(xF,0),
(Ⅰ)用k、l、m、n分別表示xE和xF;
(Ⅱ)某同學發(fā)現(xiàn),當曲線C的方程為:x2+y2=R2(R>0)時,xE·xF=R2是一個定值與點M、N、P的位置無關(guān);請你試探究當曲線C的方程為:時,xE·xF的值是否也與點M、N、P的位置無關(guān);
(Ⅲ)類比(Ⅱ)的探究過程,當曲線C的方程為y2=2px(p>0)時,探究xE與xF經(jīng)加、減、乘、除的某一種運算后為定值的一個正確結(jié)論。(只要求寫出你的探究結(jié)論,無須證明)

查看答案和解析>>

同步練習冊答案