分析 設(shè)P(x0,y0)為$y=\frac{1}{x}$上任一點(diǎn),過(guò)點(diǎn)P作曲線(xiàn)C的切線(xiàn)l,利用導(dǎo)數(shù)可求得切線(xiàn)l的斜率及方程,從而可求得l與兩坐標(biāo)軸交于A,B兩點(diǎn)的坐標(biāo),繼而可求△OAB的面積.
解答 解:設(shè)P(x0,y0)為$y=\frac{1}{x}$上任一點(diǎn),則y0=$\frac{1}{{x}_{0}}$.
∵y′=-$\frac{1}{{x}^{2}}$,設(shè)過(guò)$y=\frac{1}{x}$上一點(diǎn)P的切線(xiàn)l的斜率為k,
則k=-$\frac{1}{{x}_{{0}^{2}}}$,
∴切線(xiàn)l的方程為:y-y0=-$\frac{1}{{x}_{{0}^{2}}}$(x-x0),
∴當(dāng)x=0時(shí),y=$\frac{1}{{x}_{0}}$+y0=$\frac{2}{{x}_{0}}$,即B(0,$\frac{2}{{x}_{0}}$);
當(dāng)y=0時(shí),x=y0•x02+x0=$\frac{1}{{x}_{0}}$•x02+x0=2x0,即A(2x0,0);
∴S△OAB=$\frac{1}{2}$|OA|•|OB|=$\frac{1}{2}$×|2x0|•|$\frac{2}{{x}_{0}}$|=2.
故答案為:2
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)求過(guò)$y=\frac{1}{x}$上一點(diǎn)P的切線(xiàn)l的斜率,考查直線(xiàn)的方程及截距,考查三角形的面積公式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{8}{15}$ | B. | $\frac{4}{9}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 45°-4×360° | B. | -45°-4×360° | C. | -45°-5×360° | D. | 315°-5×360° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,0) | B. | (-1,1) | C. | (0,2) | D. | (1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com