【題目】對于定義在D上的函數(shù)f(x),若存在距離為d的兩條直線y=kx+m1和y=kx+m2 , 使得對任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,則稱函數(shù)f(x)(x∈D)有一個寬度為d的通道.給出下列函數(shù): ①f(x)=
②f(x)=sinx;
③f(x)= ;
④f(x)=
其中在區(qū)間[1,+∞)上通道寬度可以為1的函數(shù)有(寫出所有正確的序號).

【答案】①③④
【解析】解:函數(shù)①,在區(qū)間[1,+∞)上的值域為(0,1], 滿足0≤f(x)≤1,
∴該函數(shù)在區(qū)間[1,+∞)上通道寬度可以為1;
函數(shù)②,在區(qū)間[1,+∞)上的值域為[﹣1,1],
滿足﹣1≤f(x)≤1,
∴該函數(shù)在區(qū)間[1,+∞)上通道寬度可以為2;
函數(shù)③,在區(qū)間[1,+∞)上的圖象是雙曲線x2﹣y2=1在第一象限的部分,
其漸近線為y=x,滿足x﹣1≤f(x)≤x,
∴該函數(shù)在區(qū)間[1,+∞)上通道寬度可以為1;
函數(shù)④,在區(qū)間[1,+∞)上的值域為[0, ],
滿足0≤f(x)≤ 1,
∴該函數(shù)在區(qū)間[1,+∞)上通道寬度可以為1.
故滿足題意的有①③④.
所以答案是①③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,點的極坐標(biāo)方程為.

(1)求點的直角坐標(biāo),并求曲線的普通方程;

(2)設(shè)直線與曲線的兩個交點為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣ax2﹣3x.
(1)若a=4時,求f(x)在x∈[1,4]上的最大值和最小值;
(2)若f(x)在x∈[2,+∞]上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間上單調(diào)遞減的是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,點E,F(xiàn)分別為BC、PD的中點,若PA=AD=4,AB=2.
(1)求證:EF∥平面PAB.
(2)求直線EF與平面PCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定兩個命題,命題P:函數(shù)f(x)=(a﹣1)x+3在R上是增函數(shù); 命題q:關(guān)于x的方程x2﹣x+a=0有實數(shù)根. 若p∧q為假命題,p∨q為真命題,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知具有相關(guān)關(guān)系的兩個變量之間的幾組數(shù)據(jù)如下表所示:

(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計當(dāng)時, 的值;

(3)將表格中的數(shù)據(jù)看作五個點的坐標(biāo),則從這五個點中隨機(jī)抽取2個點,求這兩個點都在直線的右下方的概率.

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +lg(x+2)的定義域為(
A.(﹣2,1)
B.(﹣2,1]
C.[﹣2,1)
D.[﹣2,﹣1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列幾個命題:
①函數(shù)y= + 是偶函數(shù),但不是奇函數(shù);
②方程x2+(a﹣3)x+a=0的有一個正實根,一個負(fù)實根,則a<0;
③f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=2x2+x﹣1,則x≥0時,f(x)=﹣2x2+x+1
④函數(shù)y= 的值域是(﹣1, ).
其中正確命題的序號有

查看答案和解析>>

同步練習(xí)冊答案