【題目】如圖,在三棱錐P﹣ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中點(diǎn),E,F(xiàn)分別為PD,PC的中點(diǎn).
(Ⅰ)求證:AE⊥平面PCD;
(Ⅱ)求二面角B﹣PA﹣C的余弦值;
(Ⅲ)在棱PB上是否存在點(diǎn)M,使得CM∥平面AEF?若存在,求 的值;若不存在,說(shuō)明理由.
【答案】(Ⅰ)證明:∵AP⊥BP,D是AB中點(diǎn),
∴PD=AD,
又∠PAB=60°,∴△PAD是等邊三角形,
又E為PD的中點(diǎn),∴AE⊥PD,
∵AC⊥BC,∠ABC=45°,
又D是AB的中點(diǎn),∴CD⊥AB,
∵平面PAB⊥平面ABC,又平面PAB∩平面ABC=AB,
∴CD⊥平面PAB,∵AE平面PAB,∴CD⊥AE,
又CD∩PD=D,∴AE⊥平面PCD.
(Ⅱ)解:以A為原點(diǎn),作Ax∥DC,以AB所在直線(xiàn)為y軸,建立空間直角坐標(biāo)系,
設(shè)AB=2a,則A(0,0,0),B(0,2a,0),C(a,a,0),D(0,a,0),P(0, ),
∵CD⊥平面PAB,∴平面PAB的一個(gè)法向量為 =(﹣a,0,0),
設(shè)平面PAC的一個(gè)法向量為 =(x,y,z),
則 ,令x=1,得 =(1,﹣1, ),
設(shè)二面角B﹣PA﹣C的平面角為θ,
由圖知,二面角B﹣PA﹣C為銳角,
∴cosθ= = = ,
∴二面角B﹣PA﹣C的余弦值為 .
(Ⅲ)PB上存在M,使得CM∥平面AEF,此時(shí) = .
證明:在平面ABP中,延長(zhǎng)AE交BP為G,
取BG中點(diǎn)M,∵M(jìn)為BG中點(diǎn),D為AB中點(diǎn),
∴DM∥AG,又E為PD中點(diǎn),∴G為PM中點(diǎn),
此時(shí), = ,∴DM∥AE,
∵DM面AEF,AE面AEF,
∴DM∥平面AEF,
∵E,F(xiàn)分別是PD,PC的中點(diǎn),
∴CD∥EF,CD面AEF,EF平面AEF,
∴CD∥平面AEF,CD∩DM=D,CD面CDM,DM面CDM,
∴面CDM∥面AEF,
∵CM面CDM,∴CM∥面AEF.
【解析】(Ⅰ)推導(dǎo)出PD=AD,從而△PAD是等邊三角形,進(jìn)而AE⊥PD,再求出CD⊥AB,從而CD⊥平面PAB,進(jìn)而CD⊥AE,由此能證明AE⊥平面PCD.(Ⅱ)以A為原點(diǎn),作Ax∥DC,以AB所在直線(xiàn)為y軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角B﹣PA﹣C的余弦值.(Ⅲ)在平面ABP中,延長(zhǎng)AE交BP為G,取BG中點(diǎn)M,推導(dǎo)出G為PM中點(diǎn),此時(shí), = 從而DM∥平面AEF,推導(dǎo)出面CDM∥面AEF,從而得到CM∥面AEF.
【考點(diǎn)精析】本題主要考查了直線(xiàn)與平面平行的判定和直線(xiàn)與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行;簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行;一條直線(xiàn)與一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;b)定理體現(xiàn)了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}中a1=3,其前n項(xiàng)和Sn滿(mǎn)足Sn=pan+1﹣ (p為非零實(shí)數(shù))
(1)求p值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè){bn}是公差為3的等差數(shù)列,b1=1.現(xiàn)將數(shù)列{an}中的ab1 , ab2 , …abn…抽去,余下項(xiàng)按原有順序組成一新數(shù)列{cn},試求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|lg(x﹣1)|,若1<a<b且f(a)=f(b),則a+2b的取值范圍為( )
A.
B.
C.(6,+∞)
D.[6,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù) 的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度,得到函數(shù)y=f(x)圖象在區(qū)間 上單調(diào)遞減,則m的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2lnx+ ﹣mx(m∈R).
(Ⅰ)當(dāng)m=﹣1時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(Ⅱ)若f(x)在(0,+∞)上為單調(diào)遞減,求m的取值范圍;
(Ⅲ)設(shè)0<a<b,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】G為△ADE的重心,點(diǎn)P為△DEG內(nèi)部(含邊界)上任一點(diǎn),B,C均為AD,AE上的三等分點(diǎn)(靠近點(diǎn)A), =α +β (α,β∈R),則α+ β的范圍是( )
A.[1,2]
B.[1, ]
C.[ ,2]
D.[ ,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)題意解答
(1)已知a為常數(shù),且0<a<1,函數(shù)f(x)=(1+x)a﹣ax,求函數(shù)f(x)在x>﹣1上的最大值;
(2)若a,b均為正實(shí)數(shù),求證:ab+ba>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列
(1)在等差數(shù)列{an}中,a6=10,S5=5,求該數(shù)列的第8項(xiàng)a8;
(2)在等比數(shù)列{bn}中,b1+b3=10,b4+b6= ,求該數(shù)列的前5項(xiàng)和S5 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=|x﹣2|+|x+1|+2|x+2|.
(1)求證:f(x)≥5;
(2)若對(duì)任意實(shí)數(shù)x,15﹣2f(x)<a2+ 都成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com