設(shè)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0a/e/wr05g1.png" style="vertical-align:middle;" />的函數(shù)為實(shí)數(shù))。
(1)若是奇函數(shù),求的值;  
(2)當(dāng)是奇函數(shù)時(shí),證明對任何實(shí)數(shù)都有成立.

(1),(2)證明過程詳見解析.

解析試題分析:本題考查函數(shù)的奇偶性和函數(shù)最值.考查學(xué)生的計(jì)算能力和綜合分析問題和解決問題的能力.第一問,利用函數(shù)的奇函數(shù)的性質(zhì),列出表達(dá)式,化簡整理得出關(guān)于的恒等式,得出的值;第二問,證明恒成立問題,經(jīng)過分析題意,只需證明,所以只需求出,是通過配方法求出的,是通過分離常數(shù)法求出的.
試題解析:(1)(法一)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f7/d/o9nlz.png" style="vertical-align:middle;" />是奇函數(shù),所以,
,∴,∴
,∴,∴.(6分)
(法二)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f7/d/o9nlz.png" style="vertical-align:middle;" />是奇函數(shù),所以,即對任意實(shí)數(shù)成立.化簡整理得,這是關(guān)于的恒等式,所以,所以 (舍)或.
所以.(6分)
(2) ,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a6/9/dmkwx.png" style="vertical-align:middle;" />,所以,
從而;
對任何實(shí)數(shù)成立,
所以對任何實(shí)數(shù)、都有成立.(12分)
考點(diǎn):1.函數(shù)的奇偶性;2.配方法求函數(shù)最值;3.分離常數(shù)法求函數(shù)最值;4.恒成立問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知偶函數(shù)滿足:當(dāng)時(shí),,當(dāng)時(shí),
(Ⅰ)求表達(dá)式;
(Ⅱ)若直線與函數(shù)的圖像恰有兩個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ)試討論當(dāng)實(shí)數(shù)滿足什么條件時(shí),直線的圖像恰有個(gè)公共點(diǎn),且這個(gè)公共點(diǎn)均勻分布在直線上.(不要求過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)擬建造如圖所示的容器(不計(jì)厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計(jì)要求容器的體積為立方米,且.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為千元,設(shè)該容器的建造費(fèi)用為千元.

(Ⅰ)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(Ⅱ)求該容器的建造費(fèi)用最小時(shí)的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)= 是奇函數(shù)
(1)求實(shí)數(shù)m的值
(2)若函數(shù)f(x)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為偶函數(shù).
(Ⅰ) 求的值;
(Ⅱ) 若方程有且只有一個(gè)根, 求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且
(1)求實(shí)數(shù)的值;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f1/f/zc7s2.png" style="vertical-align:middle;" />,
(1)求;
(2)當(dāng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知A、B、C是直線上的不同三點(diǎn),O是外一點(diǎn),向量滿足,記;
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)請寫出函數(shù)在每段區(qū)間上的解析式,并在圖中的直角坐標(biāo)系中作出函數(shù)的圖象;
(II)若不等式對任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案