動點M的坐標(x,y)在其運動過程中總滿足關系式
(x-
5
)
2
+y2
+
(x+
5
)
2
+y2
=6

(1)點M的軌跡是什么曲線?請寫出它的標準方程;
(2)已知定點T(t,0)(0<t<3),若|MT|的最小值為1,求t的值;
(3)設直線l不經過原點O,與動點M的軌跡相交于A,B兩點,點G為線段AB的中點,直線OG與該軌跡相交于C,D兩點,若直線AB,CD,AC,AD,DB,BC的斜率分別為k1,k2,k3,k4,k5,k6,求證:k1•k2=k3•k4=k5•k6
分析:(1)根據(jù)
(x-
5
)
2
+y2
+
(x+
5
)
2
+y2
=6
,可得(x,y)到(-
5
,0)
,(
5
,0)
的距離的和為6,大于兩定點間的距離2
5
,故點M的軌跡是焦點在x軸上的橢圓,且a=3,c=
5
,從而可求橢圓的標準方程;
(2)|MT|2=f(x)=(x-t)2+y2=(x-t)2+4(1-
x2
9
)
,0≤x≤3,構造函數(shù),配方可得f(x)=(x-t)2+4(1-
x2
9
)=
5
9
(x-
9
5
t)2-
4
5
t2+4
,0≤x≤3,再進行分類討論,利用|MT|的最小值為1,即可求t的值;
(3)設A(x1,y1),B(x2,y2),G(x0,y0),則x1+x2=2x0,y1+y2=2y0,設C(x3,y3),則D(-x3,-y3
根據(jù)點在橢圓上,利用點差法,即可證得結論.
解答:(1)解:∵
(x-
5
)
2
+y2
+
(x+
5
)
2
+y2
=6

∴(x,y)到(-
5
,0)
,(
5
,0)
的距離的和為6,大于兩定點間的距離2
5

∴點M的軌跡是焦點在x軸上的橢圓,且a=3,c=
5

∴b2=4
∴橢圓的標準方程為:
x2
9
+
y2
4
=1

(2)解:|MT|2=f(x)=(x-t)2+y2=(x-t)2+4(1-
x2
9
)
,0≤x≤3
f(x)=(x-t)2+4(1-
x2
9
)=
5
9
(x-
9
5
t)2-
4
5
t2+4
,0≤x≤3
①當0≤
9
5
t<3
,即0<t<
5
3
時,
|MT|2
 
min
=f(
9
5
t)=-
4
5
t2+4

|MT|2
 
min
=1
,∴-
4
5
t2+4=1
,解得t=
15
2
,而t=
15
2
∉(0,
5
3
)
,故舍去
②當
9
5
t≥3
,即
5
3
≤t<3
時,
|MT|2
 
min
=f(3)=t2-6t+9
,
|MT|2
 
min
=1
,∴t2-6t+9=1,解得t=2或t=4,而t=4∉[
5
3
,3)
,故舍去
t=2∈[
5
3
,3)
,故t=2符合題意;綜上可知,t=2
(3)證明:設A(x1,y1),B(x2,y2),G(x0,y0),則x1+x2=2x0,y1+y2=2y0
x12
9
+
y12
4
=1
x22
9
+
y22
4
=1
1
9
(x12-x22)+
1
4
(y12-y22)=0

k1k2=
y1-y2
x1-x2
y0
x0
=
y1-y2
x1-x2
2y0
2x0
=
y1-y2
x1-x2
y1+y2
x1+x2
=
y12-y22
x12-x22
=-
4
9

設C(x3,y3),則D(-x3,-y3
x12
9
+
y12
4
=1
x32
9
+
y32
4
=1
1
9
(x12-x32)+
1
4
(y12-y32)=0
,
k3k4=
y1-y3
x1-x3
y1+y3
x1+x3
=
y12-y32
x12-x32
=-
4
9
,
同理k5k6=-
4
9

∴k1•k2=k3•k4=k5•k6
點評:本題考查橢圓的定義,考查橢圓的標準方程,考查分類討論的數(shù)學思想,考查配方法求函數(shù)的最值,考查點差法的運用,解題的關鍵是正確分類,合理運用點差法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

動點M的坐標(x,y)在其運動過程中總滿足關系式
(x-
3
)
2
+y2
+
(x+
3
)
2
+y2
=4

(1)點M的軌跡是什么曲線?請寫出它的標準方程;
(2)已知直線y=x+t與M的軌跡交于A、B兩點,且OA⊥OB(O為原點),求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動點M的坐標(x,y)在其運動過程中總滿足關系式
(x-
5
)
2
+y2
+
(x+
5
)
2
+y2
=6

(1)點M的軌跡是什么曲線?請寫出它的標準方程;
(2)已知定點T(t,0)(0<t<3),若|MT|的最小值為1,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省武漢外國語學校高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

動點M的坐標(x,y)在其運動過程中總滿足關系式
(1)點M的軌跡是什么曲線?請寫出它的標準方程;
(2)已知定點T(t,0)(0<t<3),若|MT|的最小值為1,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省武漢外國語學校高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

動點M的坐標(x,y)在其運動過程中總滿足關系式
(1)點M的軌跡是什么曲線?請寫出它的標準方程;
(2)已知定點T(t,0)(0<t<3),若|MT|的最小值為1,求t的值;
(3)設直線l不經過原點O,與動點M的軌跡相交于A,B兩點,點G為線段AB的中點,直線OG與該軌跡相交于C,D兩點,若直線AB,CD,AC,AD,DB,BC的斜率分別為k1,k2,k3,k4,k5,k6,求證:k1•k2=k3•k4=k5•k6

查看答案和解析>>

同步練習冊答案