分析 (1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)問(wèn)題轉(zhuǎn)化為m<ex-xlnx對(duì)$x∈({\frac{1}{2},+∞})$恒成立,令r(x)=ex-xlnx,根據(jù)函數(shù)的單調(diào)性求出r(x)的最小值,從而求出m的范圍即可.
解答 解:(1)函數(shù)f(x)的定義域是(0,+∞),
$y'=2x-({a-2})-\frac{a}{x}=\frac{{2{x^2}-({a-2})x-a}}{x}=\frac{{({x+1})({2x-a})}}{x}$.
當(dāng)a≤0時(shí),f'(x)>0對(duì)任意x∈(0,+∞)恒成立,
所以,函數(shù)f(x)在區(qū)間(0,+∞)單調(diào)遞增;
當(dāng)a>0時(shí),由f'(x)>0得$x>\frac{a}{2}$,由f'(x)<0得$0<x<\frac{a}{2}$,
所以,函數(shù)在區(qū)間$({\frac{2}{2},+∞})$上單調(diào)遞增,在區(qū)間$({0,\frac{a}{2}})$上單調(diào)遞減.
(2)假設(shè)存在實(shí)數(shù)m滿足題意,則不等式$lnx+\frac{m}{x}<\frac{e^x}{x}$對(duì)$x∈({\frac{1}{2},+∞})$恒成立
即m<ex-xlnx對(duì)$x∈({\frac{1}{2},+∞})$恒成立,
令r(x)=ex-xlnx,則r'(x)=ex-lnx-1,
令φ(x)=ex-lnx-1,則$φ'(x)={e^x}-\frac{1}{x}$,
∵φ'(x)在$({\frac{1}{2},+∞})$上單調(diào)遞增,$φ'({\frac{1}{2}})={e^{\frac{1}{2}}}-2<0,φ'(1)=e-1>0$,
且φ'(x)的圖象在$({\frac{1}{2},1})$上連續(xù),
∴存在${x_0}∈({\frac{1}{2},1})$,使得φ'(x0)=0,即${e^{x_0}}-\frac{1}{x_0}=0$,則x0=-lnx0,
∴當(dāng)$x∈({\frac{1}{2},{x_0}})$時(shí),φ(x)單調(diào)遞減;
當(dāng)x∈(x0,+∞)時(shí),φ(x)單調(diào)遞增,
則φ(x)取到最小值$φ({x_0})={e^{x_0}}-ln{x_0}-1={x_0}+\frac{1}{x_0}-1≥2\sqrt{{x_0}•\frac{1}{x_0}}-1=1>0$,
∴r'(x)>0,即r(x)在區(qū)間$({\frac{1}{2},+∞})$內(nèi)單調(diào)遞增,
$m≤r({\frac{1}{2}})={e^{\frac{1}{2}}}-\frac{1}{2}ln\frac{1}{2}={e^{\frac{1}{2}}}+\frac{1}{2}ln2=1.99525$,
∴存在實(shí)數(shù)m滿足題意,且最大整數(shù)m的值為1.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{1}{11}$ | C. | -$\frac{1}{13}$ | D. | -$\frac{1}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若l∥α,α∥β,則l∥β | B. | 若α⊥β,l⊥α,則l⊥β | C. | 若l∥α,α⊥β,則l⊥β | D. | 若l⊥α,α∥β,則l⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,1} | B. | {x|x<2} | C. | {x|-2<x<1} | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com