分析 (1)利用題中的新定義,可先計(jì)算$\overrightarrow{AB}$,$\overrightarrow{AP}$,結(jié)合已知A(1,2),利用向量的減法,可求P點(diǎn)坐標(biāo).
(2)設(shè)平面內(nèi)曲線C上的點(diǎn)P(x,y),根據(jù)把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)θ角得到點(diǎn)P的定義,可求出其繞原點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)$\frac{π}{4}$后得到點(diǎn)P′($\frac{\sqrt{2}}{2}$(x-y),$\frac{\sqrt{2}}{2}$(x+y)),另由點(diǎn)P′在曲線x2-y2=3,代入該方程即可求得原來(lái)曲線C的方程.
解答 解:(1)由已知可得$\overrightarrow{AB}$=($\sqrt{2}$,-2$\sqrt{2}$),
將點(diǎn)B(1+$\sqrt{2},2-2\sqrt{2}$),繞點(diǎn)A順時(shí)針旋轉(zhuǎn)$\frac{π}{4}$,
得$\overrightarrow{AP}$=($\sqrt{2}$cos$\frac{π}{4}$-2$\sqrt{2}$sin$\frac{π}{4}$,-$\sqrt{2}$sin$\frac{π}{4}$-2$\sqrt{2}$cos$\frac{π}{4}$)=(-1,-3)
∵A(1,2),∴P(0,-1 )
(2)設(shè)平面內(nèi)曲線C上的點(diǎn)P(x,y),則其繞原點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)$\frac{π}{4}$后得到點(diǎn)P′($\frac{\sqrt{2}}{2}$(x-y),$\frac{\sqrt{2}}{2}$(x+y)),
∵點(diǎn)P′在曲線x2-y2=3,
∴[($\frac{\sqrt{2}}{2}$(x-y)]2-[$\frac{\sqrt{2}}{2}$(x+y)]2=3,
整理得xy=-$\frac{3}{2}$.
點(diǎn)評(píng) 本題以新定義為切入點(diǎn),考查向量在幾何中的應(yīng)用以及圓錐曲線的軌跡問(wèn)題,同時(shí)考查學(xué)生的閱讀能力和分析解決問(wèn)題的能力以及計(jì)算能力.融合了向量的減法,解題的關(guān)鍵是正確理解新定義.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com