【題目】平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的方程為.
(1)求曲線的極坐標(biāo)方程;
(2)射線與曲線、直線分別交于、兩點(diǎn)(異于極點(diǎn)),求的最大值.
【答案】(1);(2).
【解析】
(1)先將曲線的參數(shù)方程化為普通方程,再由可得出曲線的極坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,根據(jù)題意得出、關(guān)于的表達(dá)式,利用三角恒等變換思想以及正弦函數(shù)的有界性可求得的最大值.
(1)將曲線的參數(shù)方程變形為(為參數(shù)),
消去參數(shù)得,即,
因此,曲線的極坐標(biāo)方程為,即;
(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,
將點(diǎn)的極坐標(biāo)代入曲線的極坐標(biāo)方程得,
將點(diǎn)的極坐標(biāo)代入直線的極坐標(biāo)方程得,,
所以,,
,,當(dāng)時,即當(dāng)時,取得最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】奇函數(shù)f(x)在R上存在導(dǎo)數(shù),當(dāng)x<0時,f(x),則使得(x2﹣1)f(x)<0成立的x的取值范圍為( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計(jì)如圖中的條形圖,已知年的就醫(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,則該人年的儲畜費(fèi)用為( )
A.元B.元C.元D.元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓臺的軸截面為等腰梯形,圓臺的側(cè)面積為.若點(diǎn)分別為圓上的動點(diǎn),且點(diǎn)在平面的同側(cè).
(1)求證:;
(2)若,則當(dāng)三棱錐的體積取最大值時,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是拋物線的頂點(diǎn),,是上的兩個動點(diǎn),且.
(1)判斷點(diǎn)是否在直線上?說明理由;
(2)設(shè)點(diǎn)是△的外接圓的圓心,求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓Q經(jīng)過定點(diǎn),且與定直線相切(其中a為常數(shù),且).記動圓圓心Q的軌跡為曲線C.
(1)求C的方程,并說明C是什么曲線?
(2)設(shè)點(diǎn)P的坐標(biāo)為,過點(diǎn)P作曲線C的切線,切點(diǎn)為A,若過點(diǎn)P的直線m與曲線C交于M,N兩點(diǎn),則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體的底面為直角梯形,四邊形為矩形,且,,,,,,分別為,,的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)在復(fù)習(xí)數(shù)列時發(fā)現(xiàn)原來曾經(jīng)做過的一道數(shù)列問題因紙張被破壞,導(dǎo)致一個條件看不清,具體如下:等比數(shù)列的前n項(xiàng)和為,已知_____,
(1)判斷,,的關(guān)系;
(2)若,設(shè),記的前n項(xiàng)和為,證明:.
甲同學(xué)記得缺少的條件是首項(xiàng)a1的值,乙同學(xué)記得缺少的條件是公比q的值,并且他倆都記得第(1)問的答案是,,成等差數(shù)列.如果甲、乙兩同學(xué)記得的答案是正確的,請你通過推理把條件補(bǔ)充完整并解答此題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系.xOy中,曲線C1的參數(shù)方程為( 為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(2)已知曲線C2的極坐標(biāo)方程為,點(diǎn)A是曲線C3與C1的交點(diǎn),點(diǎn)B是曲線C3與C2的交點(diǎn),且A,B均異于原點(diǎn)O,且|AB|=4,求α的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com