如圖,在四棱錐P-ABCD中,底面ABCD是正方形,
底面
,且PA=AB.
(1)求證:BD
平面PAC;
(2)求異面直線BC與PD所成的角.
(1)根據(jù)線面垂直的判定定理來得到
,以及
是解決的核心。
(2)45º.
試題分析:(1)
證明:∵
,
,
, 1分
又
為正方形,
, 2分
而
是平面
內(nèi)的兩條相交直線,
4分
(2)解: ∵
為正方形,
∥
,
為異面直線
與
所成的角, 6分
由已知可知,△
為直角三角形,又
,
∵
,
,
異面直線
與
所成的角為45º. 8分
點評:主要是考查了空間中線面的垂直的證明,以及異面直線所成的角的求解,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在如圖所示的幾何體中,
是邊長為2的正三角形,
平面ABC,平面
平面ABC,BD=CD,且
.
(1)若AE=2,求證:AC∥平面BDE;
(2)若二面角A—DE—B為60°.求AE的長。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在底面是直角梯形的四棱錐S-ABCD中,
(1)求四棱錐S-ABCD的體積;
(2)求證:
(3)求SC與底面ABCD所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
、
是兩條不同的直線,
、
是兩個不同的平面,則下列正確的個數(shù)為:( )
①若
,則
; ②若
,則
;
③若
,則
或
;④若
,則
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若直線上有兩個點在平面外,則( )
A.直線上至少有一個點在平面內(nèi) |
B.直線上有無窮多個點在平面內(nèi) |
C.直線上所有點都在平面外 |
D.直線上至多有一個點在平面內(nèi) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知m,n是兩條不同的直線,
是兩個不同的平面,則下列四個命題中是真命題的是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知菱形
,其邊長為2,
,
繞著
順時針旋轉(zhuǎn)
得到
,
是
的中點.
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖所示,在棱長為2的正方體
內(nèi)(含正方體表面)任取一點
,則
的概率
( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在矩形
ABCD中,
AB=4,
AD=2,
E為
AB的中點,現(xiàn)將△
ADE沿直線
DE翻折成△
A′
DE,使平面
A′
DE⊥平面
BCDE,
F為線段
A′
D的中點.
(1)求證:
EF//平面
A′
BC;(2)求直線
A′
B與平面
A′
DE所成角的正切值.
查看答案和解析>>