【題目】
某學(xué)校高一數(shù)學(xué)興趣小組對(duì)學(xué)生每周平均體育鍛煉小時(shí)數(shù)與體育成績(jī)優(yōu)秀(體育成績(jī)滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進(jìn)行分析研究,他們從本校初二,初三,高一,高二,高三年級(jí)各隨機(jī)抽取了40名學(xué)生,記錄并整理了這些學(xué)生周平均體育鍛煉小時(shí)數(shù)與體育成績(jī)優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:
初二 | 初三 | 高一 | 高二 | 高三 | |
周平均體育鍛煉小時(shí)數(shù)工(單位:小時(shí)) | 14 | 11 | 13 | 12 | 9 |
體育成績(jī)優(yōu)秀人數(shù)y(單位:人) | 35 | 26 | 32 | 26 | 19 |
該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是初三,高一,高二的3組數(shù)據(jù),請(qǐng)根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)1,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得到的線性回歸方程是否可靠?
參考數(shù)據(jù):,.
參考公式:,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌餐飲公司準(zhǔn)備在10個(gè)規(guī)模相當(dāng)?shù)牡貐^(qū)開設(shè)加盟店,為合理安排各地區(qū)加盟店的個(gè)數(shù),先在其中5個(gè)地區(qū)試點(diǎn),得到試點(diǎn)地區(qū)加盟店個(gè)數(shù)分別為1,2,3,4,5時(shí),單店日平均營(yíng)業(yè)額(萬(wàn)元)的數(shù)據(jù)如下:
加盟店個(gè)數(shù)(個(gè)) | 1 | 2 | 3 | 4 | 5 |
單店日平均營(yíng)業(yè)額(萬(wàn)元) | 10.9 | 10.2 | 9 | 7.8 | 7.1 |
(1)求單店日平均營(yíng)業(yè)額(萬(wàn)元)與所在地區(qū)加盟店個(gè)數(shù)(個(gè))的線性回歸方程;
(2)根據(jù)試點(diǎn)調(diào)研結(jié)果,為保證規(guī)模和效益,在其他5個(gè)地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營(yíng)業(yè)額預(yù)計(jì)值總和不低于35萬(wàn)元,求一個(gè)地區(qū)開設(shè)加盟店個(gè)數(shù)的所有可能取值;
(3)小趙與小王都準(zhǔn)備加入該公司的加盟店,根據(jù)公司規(guī)定,他們只能分別從其他五個(gè)地區(qū)(加盟店都不少于2個(gè))中隨機(jī)選一個(gè)地區(qū)加入,求他們選取的地區(qū)相同的概率.
(參考數(shù)據(jù)及公式:,,線性回歸方程,其中,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù).
(1)當(dāng)時(shí),若對(duì)任意恒成立,求的取值范圍;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn)和,求的取值范圍,并證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是異面直線,是,外的一點(diǎn),則下列結(jié)論中正確的是( )
A.過(guò)有且只有一條直線與,都垂直B.過(guò)有且只有一條直線與,都平行
C.過(guò)有且只有一個(gè)平面與,都垂直D.過(guò)有且只有一個(gè)平面與,都平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=aex圖象在x=0處的切線與函數(shù)g(x)=lnx圖象在x=1處的切線互相平行.
(Ⅰ)求a的值;
(Ⅱ)設(shè)直線x=t(t>0)分別與曲線y=f(x)和y=g(x)交于P,Q兩點(diǎn),求證:|PQ|>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F2,點(diǎn)O為雙曲線的中心,點(diǎn)P在雙曲線右支上,△PF1F2內(nèi)切圓的圓心為Q,圓Q與x軸相切于點(diǎn)A,過(guò)F2作直線PQ的垂線,垂足為B,則下列結(jié)論成立的是( )
A. |OA|>|OB|B. |OA|<|OB|
C. |OA|=|OB|D. |OA|與|OB|大小關(guān)系不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的圓心在x軸上,且經(jīng)過(guò)點(diǎn).
(1)求圓C的方程;
(2)若點(diǎn),直線l平行于OQ(O為坐標(biāo)原點(diǎn))且與圓C相交于M,N兩點(diǎn),直線QM、QN的斜率分別為kQM、kQN,求證:kQM+kQN為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com