已知函數(shù)f(x)=loga(1-x)+loga(x+3),其中0<a<1,記函數(shù)f(x)的定義域?yàn)镈.
(1)求函數(shù)f(x)的定義域D;
(2)若函數(shù)f(x)的最小值為-4,求a的值;
(3)若對(duì)于D內(nèi)的任意實(shí)數(shù)x,不等式-x2+2mx-m2+2m<1恒成立,求實(shí)數(shù)m的取值范圍.
分析:(1)根據(jù)使函數(shù)的解析式有意義的原則,構(gòu)造關(guān)于自變量x的不等式組,解得函數(shù)f(x)的定義域D;
(2)利用對(duì)數(shù)的運(yùn)算性質(zhì),化簡(jiǎn)函數(shù)的解析式,并根據(jù)二次函數(shù)的圖象和性質(zhì),可分析出函數(shù)f(x)的最小值為-4時(shí),a的值
(3)若不等式-x2+2mx-m2+2m<1恒成立,即-x2+2mx-m2+2m的最大值小于1,結(jié)合二次函數(shù)的圖象和性質(zhì),分類(lèi)討論后,可得實(shí)數(shù)m的取值范圍.
解答:解:(1)要使函數(shù)有意義:
則有
1-x>0
x+3>0
,解得-3<x<1
∴函數(shù)的定義域D為(-3,1)…(2分)
(2)f(x)=loga(1-x)+loga(x+3)=loga(1-x)•(x+3)=loga[-(x+1)2+4],
∵x∈(-3,1)
∴0<-(x+1)2+4≤4
∵0<a<1
∴l(xiāng)oga[-(x+1)2+4]≥loga4,
f(x)的最小值為loga4,
∴l(xiāng)oga4=-4,即a=
2
2

(3)由題知-x2+2mx-m2+2m<1在x∈(-3,1)上恒成立,?x2-2mx+m2-2m+1>0在x∈(-3,1)上恒成立,…(8分)
令g(x)=x2-2mx+m2-2m+1,x∈(-3,1),
配方得g(x)=(x-m)2-2m+1,其對(duì)稱(chēng)軸為x=m,
①當(dāng)m≤-3時(shí),g(x)在(-3,1)為增函數(shù),∴g(-3)=(-3-m)2-2m+1=m2+4m+10≥0,
而m2+4m+10≥0對(duì)任意實(shí)數(shù)m恒成立,∴m≤-3.       …(10分)
②當(dāng)-3<m<1時(shí),函數(shù)g(x)在(-3,m)為減函數(shù),在(m,1)為增函數(shù),
∴g(m)=-2m+1>0,解得m<
1
2
.∴-3<m<
1
2
…(12分)
③當(dāng)m≥1時(shí),函數(shù)g(x)在(-3,1)為減函數(shù),∴g(1)=(1-m)2-2m+1=m2-4m+2≥0,
解得m≥2+
2
或m≤2-
2
,∴-3<m<
1
2
…(14分)
綜上可得,實(shí)數(shù)m的取值范圍是 (-∞,
1
2
)∪[2+
2
,+∞)    …(15分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)恒成立問(wèn)題,函數(shù)的定義域及求法,函數(shù)的最值,熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線(xiàn)l:y=kx-2與曲線(xiàn)y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線(xiàn)l∥AB,則稱(chēng)直線(xiàn)AB存在“伴侶切線(xiàn)”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱(chēng)直線(xiàn)AB存在“中值伴侶切線(xiàn)”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線(xiàn)AB是否存在“中值伴侶切線(xiàn)”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線(xiàn)l與直線(xiàn)x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線(xiàn)l過(guò)點(diǎn)(0,-1),并且與曲線(xiàn)y=f(x)相切,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線(xiàn)C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線(xiàn)l,使得l為曲線(xiàn)C的對(duì)稱(chēng)軸?若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案