lim
n→∞
1+3+5+…+(2n-1)
3n2+3n+1
=
 
考點:極限及其運算,數(shù)列的求和
專題:計算題
分析:利用等差數(shù)列的性質(zhì)先求出分為n2,再由
極限的運算法則進行求解.
解答: 解:
lim
n→∞
1+3+5+…+(2n-1)
3n2+3n+1

=
lim
n→∞
n
2
(1+2n-1)
3n2+3n+1

=
lim
n→∞
n2
3n2+3n+1

=
lim
n→∞
1
3+
3
n
+
1
n2

=
1
3

故答案為:
1
3
點評:本題考查極限的計算,是中檔題,解題時要認真審題,注意等差數(shù)列的前n項和公式的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=5,an+1=
8an-12
3an-4
,n∈N*,bn=
1
an-2

(Ⅰ)求證:數(shù)列{bn}為等差數(shù)列,并求其通項公式;
(Ⅱ)已知以數(shù)列{bn}的公差為周期的函數(shù)f(x)=Asin(ωx+φ)[A>0,ω>0,φ∈(0,π)]在區(qū)間[0,
1
2
]上單調(diào)遞減,求φ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0≤α≤π,不等式x2-(2sinα)x+
1
2
cos2α≥0對x∈R恒成立,則α的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個正數(shù)a,b 滿足a+3b=ab 則a+b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線x-y-1=0與曲線x2y-ax+a=0相切,則實數(shù)a為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
-x2-x+2
的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x+y-b=0與圓x2+y2=9相切,則b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=-
1
an+2
,則數(shù)列{an}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,其前n項和為Sn,已知a3=
3
2
,S3=
9
2

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)是否存在正整數(shù)n,使得Sn-Sn+2=
3
32
?,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案