(本題滿分14分)

某高校從參加今年自主招生考試的學(xué)生中隨機抽取容量為50的學(xué)生成績樣本,得頻率分布表如下:

組號

分組

頻數(shù)

頻率

第一組

8

0.16

第二組

0.24

第三組

15

第四組

10

0.20

第五組

5

0.10

合              計

50

1.00

(1)寫出表中①②位置的數(shù)據(jù);

(2)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三、四、五組中用分層抽樣法抽取6名學(xué)生進行第二輪考核,分別求第三、四、五各組參加考核人數(shù);

(3)在(2)的前提下,高校決定在這6名學(xué)生中錄取2名學(xué)生,求2人中至少有1名是第四組的概率.

解:

(1) ①②位置的數(shù)據(jù)分別為12、0.3;   ………………………………………………4分

(2) 第三、四、五組參加考核人數(shù)分別為3、2、1; …………………………………8分

(3) 設(shè)上述6人為abcdef(其中第四組的兩人分別為de),則從6人中任取2人的所有情形為:{abac,ad,ae,afbc,bd,bebf,cd,ce,cfde,df,ef}

共有15種.…………………………………………………………………………10分

記“2人中至少有一名是第四組”為事件A,則事件A所含的基本事件的種數(shù)有9種. …………………………………………………………………………………12分

所以,故2人中至少有一名是第四組的概率為. ……………14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足。

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點,使 (O是坐標(biāo)原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習(xí)冊答案