已知定點N(3,0)與以點M為圓心的圓M的方程為(x+3)2+y2=16,動點P在圓M上運動,線段PN的垂直平分線交直線MP于Q點,則動點Q的軌跡方程是
x2
4
-
y2
5
=1
x2
4
-
y2
5
=1
分析:連接QN,得出|QN|-|QM|為定值,從而可知Q滿足雙曲線的定義,求a、b可得它的方程.
解答:解:連接QN,如圖
由已知,得|QN|=|QP|,所以|QN|-|QM|=|QP|-|QM|=|MP|=4
又|MN|=6,4<6,
根據(jù)雙曲線的定義,點Q的軌跡是M,N為焦點,以4為實軸長的雙曲線,
所以2a=4,2c=6,所以b=
5
,
所以,點Q的軌跡方程為:
x2
4
-
y2
5
=1

故答案為:
x2
4
-
y2
5
=1
點評:本題主要考查了軌跡方程的問題,解題的關(guān)鍵是利用了雙曲線的定義求得軌跡方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定點A(-3,0),兩動點B、C分別在y軸和x軸上運動,且滿足
AB
BC
=0,
CQ
=2
BC

(1)求動點Q的軌跡E的方程;
(2)過點G(0,1)的直線l與軌跡E在x軸上部分交于M、N兩點,線段MN的垂直平分線與x軸交于D點,求D點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•揭陽一模)已知定點A(-3,0),MN分別為x軸、y軸上的動點(M、N不重合),且AN⊥MN,點P在直線MN上,
NP
=
3
2
MP

(1)求動點P的軌跡C的方程;
(2)設(shè)點Q是曲線x2+y2-8x+15=0上任一點,試探究在軌跡C上是否存在點T?使得點T到點Q的距離最小,若存在,求出該最小距離和點T的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省宣城市寧國中學(xué)高二(上)第二次段考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知定點N(3,0)與以點M為圓心的圓M的方程為(x+3)2+y2=16,動點P在圓M上運動,線段PN的垂直平分線交直線MP于Q點,則動點Q的軌跡方程是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省宜春市上高二中高二(下)第五次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知定點A(-3,0),兩動點B、C分別在y軸和x軸上運動,且滿足,
(1)求動點Q的軌跡E的方程;
(2)過點G(0,1)的直線l與軌跡E在x軸上部分交于M、N兩點,線段MN的垂直平分線與x軸交于D點,求D點橫坐標的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案