【題目】已知,命題:對,不等式恒成立;命題,使得成立.

(1)若為真命題,求的取值范圍;

(2)當(dāng)時(shí),若假,為真,求的取值范圍.

【答案】(1) 1≤m≤2.(2) (﹣∞,1)(1,2].

【解析】

試題分析:(1)(2x-2)minm2-3m.m2-3m≤-2,解得1≤m≤2;(2)pq中一個(gè)是真命題,一個(gè)是假命題,解得m的取值范圍為(-∞,1)(1,2].

試題解析:

 (1)∵對任意x[0,1],不等式2x-2≥m2-3m恒成立,

(2x-2)minm2-3m.m2-3m≤-2.

解得1≤m≤2.

因此,若p為真命題時(shí),m的取值范圍是[1,2].

(2)a=1,且存在x[-1,1],使得max成立,

mx,命題q為真時(shí),m≤1.

pq為假,pq為真,

p,q中一個(gè)是真命題,一個(gè)是假命題.

當(dāng)pq假時(shí),則解得1<m≤2;

當(dāng)pq真時(shí),m<1.

綜上所述,m的取值范圍為(-∞,1)(1,2].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列4個(gè)正方體中,點(diǎn),,,分別為正方體的頂點(diǎn)或所在棱的中點(diǎn),則在這4個(gè)正方體中,滿足直線平面的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在用二次法求方程3x+3x-8=0在(1,2)內(nèi)近似根的過程中,已經(jīng)得到f1)<0,f1.5)>0f1.25)<0,則方程的根落在區(qū)間(  )

A. B. C. D. 不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們可以把看作每天的"進(jìn)步率都是1%,一年后是;而把看作每天的落后率都是1%,一年后是.利用計(jì)算工具計(jì)算并回答下列問題:

1)一年后進(jìn)步的是落后的多少倍?

2)大約經(jīng)過多少天后進(jìn)步的分別是落后10倍、100倍、1000倍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、滿足條件求:

(1)的最大值和最小值;

(2)的最大值和最小值;

(3)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分) 已知P3,2),一直線過點(diǎn)P

若直線在兩坐標(biāo)軸上截距之和為12,求直線的方程;

若直線xy軸正半軸交于A、B兩點(diǎn),當(dāng)面積為12時(shí)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),(為常數(shù)),.曲線在點(diǎn)處的切線與軸平行

(1)的值;

(2)的單調(diào)區(qū)間和最小值;

(3)對任意恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】)設(shè) ,,若 的必要不充分條件,求實(shí)數(shù)的取值范圍

)已知命題方程表示焦點(diǎn)在軸上的橢圓;命題:雙曲線的離心率.若 有且只有一個(gè)為真命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】五一勞動(dòng)節(jié)放假,某商場進(jìn)行一次大型抽獎(jiǎng)活動(dòng).在一個(gè)抽獎(jiǎng)盒中放有紅、橙、黃、綠、藍(lán)、紫的小球各2個(gè),分別對應(yīng)1分、2分、3分、4分、5分、6分.從袋中任取3個(gè)小球,按3個(gè)小球中最大得分的8倍計(jì)分,計(jì)分在20分到35分之間即為中獎(jiǎng).每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球中最大得分,求:

(1)取出的3個(gè)小球顏色互不相同的概率;

(2)隨機(jī)變量的概率分布和數(shù)學(xué)期望;

(3)求某人抽獎(jiǎng)一次,中獎(jiǎng)的概率.

查看答案和解析>>

同步練習(xí)冊答案