過橢圓
的左焦點
作直線
交橢圓于
兩點,
是橢圓右焦點,則
的周長為( )
試題分析:由橢圓的定義知:
,∴
的周長為
,故選B
點評:熟練掌握橢圓的定義是解決此類問題的關鍵,屬基礎題
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在平面直角坐標系
中,橢圓
的右焦點為
,離心率為
.
分別過
,
的兩條弦
,
相交于點
(異于
,
兩點),且
.
(1)求橢圓的方程;
(2)求證:直線
,
的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知圓的方程為
,過點
作圓的兩條切線,切點分別為
、
,直線
恰好經(jīng)過橢圓
的右頂點和上頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設
是橢圓
(
垂直于
軸的一條弦,
所在直線的方程為
且
是橢圓上異于
、
的任意一點,直線
、
分別交定直線
于兩點
、
,求證
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的兩個焦點為
,點
在橢圓
上.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知點
,設點
是橢圓
上任一點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的左焦點為F,右頂點為A,以FA為直徑的圓經(jīng)過橢圓的上頂點,則橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知動點
到兩定點
、
的距離和為8,且
,線段
的的中點為
,過點
的所有直線與點
的軌跡相交而形成的線段中,長度為整數(shù)的有
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)
已知橢圓
過點
,且離心率為
.
(1)求橢圓
的方程;
(2)
為橢圓
的左右頂點,點
是橢圓
上異于
的動點,直線
分別交直線
于
兩點.
證明:以線段
為直徑的圓恒過
軸上的定點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)設雙曲線
的兩個焦點分別為
,離心率為2.
(Ⅰ)求此雙曲線的漸近線
的方程;
(Ⅱ)若
、
分別為
上的點,且
,求線段
的中點
的軌跡方程,并說明軌跡是什么曲線;
查看答案和解析>>