7.復(fù)數(shù)$\frac{2}{1-i}$-2i(i為虛數(shù)單位)的共軛復(fù)數(shù)的虛部等于( 。
A.-1B.1-iC.iD.1

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再求其共軛復(fù)數(shù)得答案.

解答 解:∵$\frac{2}{1-i}$-2i=$\frac{2(1+i)}{(1-i)(1+i)}-2i=\frac{2(1+i)}{2}-2i=1-i$,
∴復(fù)數(shù)$\frac{2}{1-i}$-2i的共軛復(fù)數(shù)為1+i,其虛部為1.
故選:D.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知四棱錐V-ABCD,底面ABCD是邊長為2的正方形,VA⊥平面ABCD,且VA=4,則此四棱錐的側(cè)面中,所有直角三角形的面積的和是8+4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,PD⊥底面ABCD,E,F(xiàn) 分別是 AB,PC 的中點(diǎn).
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)設(shè) PD=CD=4,∠BAD=60°,求二面角 E-AF-D 大小的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,a,b,c分別為內(nèi)角的對邊,若a=$\sqrt{3}$,A=$\frac{π}{3}$,b=$\sqrt{2}$,則B=( 。
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{3π}{4}$D.$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=log2(x+3)(x-5)的定義域是A,函數(shù)g(x)=x3+m在x∈[1,2]上的值域?yàn)锽,又已知B⊆A,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-11)∪(4,+∞)B.(-11,4)C.(-4,-3)D.(-∞,-4]∪[-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.有關(guān)線性回歸的說法,不正確的是( 。
A.相關(guān)關(guān)系的兩個變量不是因果關(guān)系
B.散點(diǎn)圖能直觀地反映數(shù)據(jù)的相關(guān)程度
C.回歸直線最能代表線性相關(guān)的兩個變量之間的關(guān)系
D.任一組數(shù)據(jù)都有回歸方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)右支上非頂點(diǎn)的一點(diǎn)A關(guān)于原點(diǎn)O的對稱點(diǎn)為B,F(xiàn)為其右焦點(diǎn),若$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,設(shè)∠BAF=θ,且θ∈($\frac{π}{4}$,$\frac{5π}{12}$),則雙曲線C離心率的取值范圍是( 。
A.($\sqrt{2}$,2]B.[$\sqrt{2}$,+∞)C.($\sqrt{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}滿足a2=2,且a5+a6+a7=18.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,n∈N*,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在三棱錐A-BCD中,AB⊥BD,AD⊥CD,M,N分別為AC,BC的中點(diǎn),且△BMC為正三角形.求證:
(1)MN∥平面ABD;
(2)平面ABD⊥平面ACD.

查看答案和解析>>

同步練習(xí)冊答案