【題目】為了解甲、乙兩廠的產(chǎn)品質(zhì)量,分別從兩廠生產(chǎn)的產(chǎn)品中各隨機(jī)抽取10件,測(cè)量產(chǎn)品中某種元素的含量(單位:毫克),其測(cè)量數(shù)據(jù)的莖葉圖如圖所示.

規(guī)定:當(dāng)產(chǎn)品中此種元素的含量大于18毫克時(shí),認(rèn)定該產(chǎn)品為優(yōu)等品.

(1)試比較甲、乙兩廠生產(chǎn)的產(chǎn)品中該種元素含量的平均值的大小;

(2)從乙廠抽出的上述10件產(chǎn)品中隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)等品數(shù)X的分布列及數(shù)學(xué)期望.

【答案】(1)16.9;(2)見(jiàn)解析

【解析】

(1)根據(jù)平均數(shù)的計(jì)算公式,分別求得甲廠和乙廠的平均值,比較即可得到結(jié)論;

(2)由題知從乙廠抽出的10件產(chǎn)品中有4件優(yōu)等品.的可能取值為,求解變量取每個(gè)值的概率,得到相應(yīng)的分布列,再利用期望的公式,即可求解數(shù)學(xué)期望.

(1)由題可知

甲廠產(chǎn)品中該種元素含量的平均值為×(9+18+15+16+19+13+23+20+25+21)=17.9,

乙廠產(chǎn)品中該種元素含量的平均值為×(18+14+15+16+19+10+13+21+20+23)=16.9,

所以甲廠產(chǎn)品中該種元素含量的平均值大于乙廠的平均值.

(2)由題知從乙廠抽出的10件產(chǎn)品中有4件優(yōu)等品.X的可能取值為0,1,2,3,對(duì)應(yīng)的概率分別為P(X=0)==,P(X=1)==,

P(X=2)==,P(X=3)==.

所以X的分布列為

X

0

1

2

3

P

X的數(shù)學(xué)期望E(X)=0×+1×+2×+3×=1.2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,D是到原點(diǎn)的距離不大于1的點(diǎn)構(gòu)成的區(qū)域,E是滿足不等式組 的點(diǎn)(x,y)構(gòu)成的區(qū)域,向D中隨機(jī)投一點(diǎn),則所投的點(diǎn)落在E中的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小學(xué)對(duì)一年級(jí)的甲、乙兩個(gè)班進(jìn)行“數(shù)學(xué)學(xué)前教育”對(duì)“小學(xué)數(shù)學(xué)成績(jī)優(yōu)秀”影響的試驗(yàn),其中甲班為試驗(yàn)班(實(shí)施了數(shù)學(xué)學(xué)前教育),乙班為對(duì)比班(和甲班一樣進(jìn)行常規(guī)教學(xué),但沒(méi)有實(shí)施數(shù)學(xué)學(xué)前教育),在期末測(cè)試后得到如下數(shù)據(jù):

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計(jì)

甲班

30

20

50

乙班

25

25

50

總計(jì)

55

45

100

能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為進(jìn)行“數(shù)學(xué)學(xué)前教育”對(duì)“小學(xué)數(shù)學(xué)成績(jī)優(yōu)秀”有積極作用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:(a>b>0)的離心率為,以坐標(biāo)原點(diǎn)O為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線x+y+=0相切.A,B分別是橢圓C的左、右頂點(diǎn),直線l過(guò)B點(diǎn)且與x軸垂直.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)G是橢圓C上異于A,B的任意一點(diǎn),過(guò)點(diǎn)GGH⊥x軸于點(diǎn)H,延長(zhǎng)HG到點(diǎn)Q使得|HG|=|GQ|,連接AQ并延長(zhǎng)交直線l于點(diǎn)M,N為線段MB的中點(diǎn),判斷直線QN與以AB為直徑的圓O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某大學(xué)從理工類專業(yè)的A班和文史類專業(yè)的B班各抽取20名同學(xué)參加環(huán)保知識(shí)測(cè)試.統(tǒng)計(jì)得到成績(jī)與專業(yè)的列聯(lián)表如下所示:

優(yōu)秀

非優(yōu)秀

總計(jì)

A

14

6

20

B

7

13

20

總計(jì)

21

19

40

則下列說(shuō)法正確的是 ( )

A. 有99%的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)有關(guān)

B. 有99%的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)無(wú)關(guān)

C. 有95%的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)有關(guān)

D. 有95%的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 =1(a>b>0)的離心率為 ,長(zhǎng)軸長(zhǎng)為4,過(guò)橢圓的左頂點(diǎn)A作直線l,分別交橢圓和圓x2+y2=a2于相異兩點(diǎn)P,Q.

(1)若直線l的斜率為 ,求 的值;
(2)若 ,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為,坐標(biāo)原點(diǎn)O到直線x+y-b=0的距離為.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)過(guò)橢圓C的右焦點(diǎn)F且傾斜角為45°的直線l與橢圓C交于A,B兩點(diǎn),對(duì)于橢圓C上一點(diǎn)M,若(λ>0,μ>0),求λμ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)在國(guó)慶黃金周的促銷(xiāo)活動(dòng)中,對(duì)10月1日9時(shí)至14時(shí)的銷(xiāo)售額進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.已知9時(shí)至10時(shí)的銷(xiāo)售額為3萬(wàn)元,則11時(shí)至12時(shí)的銷(xiāo)售額為萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ=2sinθ,直線l的參數(shù)方程是 (t為參數(shù)).設(shè)直線l與x軸的交點(diǎn)是M,N是曲線C上一動(dòng)點(diǎn),求MN的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案