在△ABC中,若A=60°,a=
3
,則
a+b+c
sinA+sinB+sinC
=
 
分析:首先根據(jù)正弦定理得出2r=
a
sinA
=2,然后利用正弦定理將所求的式子轉化成
2rsinA+2rsinB+2rsinC
sinA+sinB+sinC
即可求出結果.
解答:解:由正弦定理可得  2r=
a
sinA
=
3
sin60°
=2,(r為外接圓半徑);
a+b+c
sinA+sinB+sinC
=
2rsinA+2rsinB+2rsinC
sinA+sinB+sinC
=2r=2,
故答案為2.
點評:本題考查正弦定理的應用,求出2r的值,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出命題:
①函數(shù)y=2sinx-cosx的值域是[-2,1];
②函數(shù)y=sinπxcosπx是周期為2的奇函數(shù);
x=-
3
4
π
是函數(shù)y=sin(x+
π
4
)
的一條對稱軸;
④若sin2α<0,cosα-sinα<0,則α一定為第二象限角;
⑤在△ABC中,若A>B則sinA>sinB.
其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若a=7,b=3,c=8,則其面積等于( 。
A、12
B、
21
2
C、28
D、6
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若∠A=60°,∠B=45°,BC=
2
,則AC=
2
3
3
2
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,真命題的個數(shù)為( 。
(1)在△ABC中,若A>B,則sinA>sinB;
(2)已知
AB
=(3,4),
CD
=(-2,-1)
,則
AB
CD
上的投影為-2;
(3)已知p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,則“p∧¬q”為假命題;
(4)已知函數(shù)f(x)=sin(ωx+
π
6
)-2
(ω>0)的導函數(shù)的最大值為3,則函數(shù)f(x)的圖象關于x=
π
3
對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α為銳角,且tanα=
2
-1
,函數(shù)f(x)=2xtan2α+sin(2α+
π
4
)
,數(shù)列{an}的首項a1=1,an+1=f(an).
(1)求函數(shù)f(x)的表達式;
(2)在△ABC中,若∠A=2α,∠C=
π
3
,BC=2,求△ABC的面積
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

同步練習冊答案