向量
OA
=(k,1),
OB
=(4,5),
OC
=(-k,10),且A,B,C三點共線,則k=
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:根據(jù)共線向量基本定理,存在實數(shù)λ,使
AB
AC
,帶入坐標(biāo)即可求出k.
解答: 解:
AB
=
OB
-
OA
=(4-k,4)
AC
=
OC
-
OA
=(-2k,9)
;
∵A,B,C三點共線;
∴存在實數(shù)λ,使
AB
AC
,帶入坐標(biāo)得:
4-k=-2λk
4=9λ
,解得,k=36.
故答案是:36.
點評:對共線向量基本定理掌握熟練了,解這道題是比較簡單的.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+㏑x
x

(1)若函數(shù)在區(qū)間(t,t+
1
2
)(其中t>0)上存在極值,求實數(shù)t的取值范圍;
(2)如果當(dāng)x≥1時,不等式f(x)≥
a
x+1
恒成立,求實數(shù)a的取值范圍.
(3)證明:[(n+1)!]2>(n+1)•en-2(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
(x>0),若將函數(shù)圖象繞原點逆時針旋轉(zhuǎn)α(α∈(0,π])角后得到的函數(shù)y=g(x)存在反函數(shù),則α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
(1-i)3
1+i
=-2+bi,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=
x-1, x≥2
1, x<2
,g(x)=x2-x(x∈R),則方程f[g(x)]=x的解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義“階梯函數(shù)”h(x)=
1,x>0
0,x≤0
,則不等式x+2>(2x-1)h(x)的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若B=2A,a=1,b=
3
,則c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點C在線段AB上(端點除外),若C分AB的比λ=
AC
CB
,則得分點C的坐標(biāo)公式
xC=
xAxB
1+λ
yC=
yAyB
1+λ
.如圖所示,對于函數(shù)f(x)=x2(x>0)上任意兩點A(a,a2),B(b,b2),線段AB必在弧AB上方.由圖象中的點C在點C′正上方,有不等式
a2b2
1+λ
>(
a+λb
1+λ
2成立.對于函數(shù)y=lnx的圖象上任意兩點A(a,lna),B(b,lnb),類比上述不等式可以得到的不等式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標(biāo)軸平行,又不經(jīng)過任何整點;
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點;
③直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是無理數(shù);
④過函數(shù)y=
9-x2
圖象上任意兩個整點作直線,則直線的條數(shù)為3條.

查看答案和解析>>

同步練習(xí)冊答案