已知實(shí)數(shù)r是常數(shù),如果M(x0,y0)是圓x2+y2=r2外的一點(diǎn),那么直線x0x+y0y=r2與圓x2+y2=r2的位置關(guān)系是( 。
A.相交B.相切C.相離D.都有可能
∵M(jìn)(x0,y0)是圓x2+y2=r2外的一點(diǎn),
∴x02+y02>r2,
∴圓心到直線x0x+y0y=r2的距離
r2
x02+y02
<r,
∴直線x0x+y0y=r2與圓x2+y2=r2相交.
故選:A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線3x-4y+3=0被圓x2+y2=1所截截得的弦長(zhǎng)為( 。
A.
4
5
B.
8
5
C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線
3
x-y+2=0與圓x2+y2=2的交點(diǎn)個(gè)數(shù)有( 。﹤(gè).
A.0B.1C.2D.不能斷定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線kx+y-2=0(k∈R)與圓x2+y2+2x-2y+1=0的位置關(guān)系是( 。
A.相交B.相切C.相離D.與k值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0,m∈R.
(1)若直線l過圓C的圓心,求m的值;
(2)若直線l與圓C交于A,B兩點(diǎn),且|AB|=
17
,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線ax+by-1=0(a,b不全為0)與圓x2+y2=50有公共點(diǎn),且公共點(diǎn)的橫、縱坐標(biāo)均為整數(shù),那么這樣的直線有( 。
A.66條B.72條C.74條D.78條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知以O(shè)為圓心的圓與直線l:y=mx+(3-4m),(m∈R)恒有公共點(diǎn),且要求使圓O的面積最。
(1)寫出圓O的方程;
(2)圓O與x軸相交于A、B兩點(diǎn),圓內(nèi)動(dòng)點(diǎn)P使|
PA
|
、|
PO
|
、|
PB
|
成等比數(shù)列,求
PA
PB
的范圍;
(3)已知定點(diǎn)Q(-4,3),直線l與圓O交于M、N兩點(diǎn),試判斷
QM
QN
×tan∠MQN
是否有最大值,若存在求出最大值,并求出此時(shí)直線l的方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)任意的實(shí)數(shù)t,直線ty=x-
1
2
與圓x2+y2=1的位置關(guān)系一定是( 。
A.相切
B.相交且直線不過圓心
C.相交且直線不一定過圓心
D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若圓C1x2y2+2axa2-4=0(a∈R)與圓C2x2y2-2byb2-1=0(b∈R)外切,則ab的最大值為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案