【題目】已知四棱錐的底面為直角梯形,,°,底面,且,是的中點(diǎn).
(1)證明:平面平面;
(2)求與所成角的余弦值;
(3)求平面與平面所成二面角(銳角)的余弦值.
【答案】(1)見解析;(2);(3)
【解析】
試題(1)利用面面垂直的性質(zhì),證明CD⊥平面PAD.
(2)建立空間直角坐標(biāo)系,寫出向量與的坐標(biāo),然后由向量的夾角公式求得余弦值,從而得所成角的大小.
(3)分別求出平面的法向量和面的一個法向量,然后求出兩法向量的夾角即可.
試題解析:證明:以為坐標(biāo)原點(diǎn)長為單位長度,如圖建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為.
(1)證明:因
由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面.又在面上,故面⊥面.
(2)因
(3)平面的一個法向量設(shè)為,
平面的一個法向量設(shè)為,
所求二面角的余弦值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,為邊的中點(diǎn).將△沿翻折,得到四棱錐.設(shè)線段的中點(diǎn)為,在翻折過程中,有下列三個命題:
① 總有平面;
② 三棱錐體積的最大值為;
③ 存在某個位置,使與所成的角為.
其中正確的命題是____.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校為增加應(yīng)屆畢業(yè)生就業(yè)機(jī)會,每年根據(jù)應(yīng)屆畢業(yè)生的綜合素質(zhì)和學(xué)業(yè)成績對學(xué)生進(jìn)行綜合評估,已知某年度參與評估的畢業(yè)生共有2000名,其評估成績近似的服從正態(tài)分布.現(xiàn)隨機(jī)抽取了100名畢業(yè)生的評估成績作為樣本,并把樣本數(shù)據(jù)進(jìn)行了分組,繪制了頻率分布直方圖:
(1)求樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若學(xué)校規(guī)定評估成績超過分的畢業(yè)生可參加三家公司的面試.
(ⅰ)用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,請利用估計(jì)值判斷這2000名畢業(yè)生中,能夠參加三家公司面試的人數(shù);
(ⅱ)若三家公司每家都提供甲、乙、丙三個崗位,崗位工資表如下:
公司 | 甲崗位 | 乙崗位 | 丙崗位 |
9600 | 6400 | 5200 | |
9800 | 7200 | 5400 | |
10000 | 6000 | 5000 |
李華同學(xué)取得了三個公司的面試機(jī)會,經(jīng)過評估,李華在三個公司甲、乙、丙三個崗位的面試成功的概率均為,李華準(zhǔn)備依次從三家公司進(jìn)行面試選崗,公司規(guī)定:面試成功必須當(dāng)場選崗,且只有一次機(jī)會.李華在某公司選崗時,若以該崗位工資與未進(jìn)行面試公司的工資期望作為抉擇依據(jù),問李華可以選擇公司的哪些崗位?
并說明理由.
附:,若隨機(jī)變量,
則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題的個數(shù)是( )
①若“p∨q”為真命題,則“p∧q”為真命題;
②“a∈(0,+∞),函數(shù)y=在定義域內(nèi)單調(diào)遞增”的否定;
③l為直線,α,β為兩個不同的平面,若l⊥β,α⊥β,則l∥α;
④“x∈R,≥0”的否定為“R,<0”.
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).
(1)求證:AF∥平面PEC
(2)求證:平面PCD⊥平面PEC;
(3)求三棱錐C-BEP的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面ABCD為直角梯形,,,側(cè)面底面ABCD,,.
若PB的中點(diǎn)為E,求證:平面PCD;
若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時,求證:函數(shù)有且僅有一個零點(diǎn);
(Ⅲ)當(dāng)時,寫出函數(shù)的零點(diǎn)的個數(shù).(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù) .
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個零點(diǎn),,求的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求實(shí)數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com